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High Dimensional Data Analysis Of Microscopy Images 

 

Project Summary: 

Technological and computing advances have resulted in the ability to obtain new micros-

copy data with unprecedented resolution over multiple dimensions and over large data 

sets. This project is aimed at developing techniques to analyze two and three dimensional 

images that are obtained by scanning tunneling microscopy. The project will develop 

high-dimensional data analysis tools to identify basic motifs in microscopy images in a 

statistically rigorous fashion. The motifs identified by image analysis will then be used to 

feed back into theoretical analyses of the electronic structure of nanoscale materials. The 

analysis techniques developed as part of this project will also be packaged and made 

available for use for any microscopy technique.  

 

Basics of STM and STS 

Scanning Tunneling Micros-

copy (STM) is a widely used tech-

nique to probe new materials at the 

nanoscale. The STM sensor relies on 

the principle of electron tunneling – 

when two materials are brought ex-

tremely closely together (typically 0.5 

nanometers apart), electrons can jump 

from one material to the other as de-

scribed by the laws of quantum me-

chanics. If a voltage difference exists 

between the two materials, a net flow of electrons from one material to the other occurs, 

resulting in an electrical current that is detected in the experiment. In practice, one of the 

two materials is the sample of interest, and the other material is an atomically sharp probe 

tip that is computer and electronically controlled. By rastering the tip across the material 

and measuring the flow of electrons at each point, we can obtain a map of the surface of 

the material down to the sub-atomic scale. Shown in figure 1 are typical STM images ob-

tained in PI Pasupathy’s laboratory. Typically, each image contains 256 or 512 pixels per 

side.  

While the basic STM technique described above was invented in the 1980’s and 

1990’s, over the past ~15 years the associated technique of scanning tunneling spectros-

copy (STS) has been developed rapidly [1]. In STS, the probe is located at a fixed point 

in space, and the tunneling current is 

measured for several different values of 

voltage. The tip is then rastered across 

the surface as in STM and the data col-

lected at each point. At the end of the 

measurement, we have obtained a three-

dimensional dataset – one dimension 

being the voltage values and the other 

two being the spatial dimensions as be-

fore. A typical dataset could have size 
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100 X 512 X 512. From such a dataset, we can generate 100 images in space, one for 

each of the voltages at which the measurement was conducted. Typical STS images are 

shown in figure 2.  

  

The density of states and inhomogeneity 

The contrast in STS images is directly related to the electronic properties of a na-

noscale material. At a basic level, a high value at a given point in space implies that more 

electrons are tunneling into the material at that given energy. In the language of quantum 

mechanics, this implies that the density of electronic states available for tunneling to oc-

cur is high at that point. The density of states (DOS) determines many basic properties 

such as electrical resistance, color, reactivity, and so on.  

For a perfect crystal, the DOS of the crystal will be uniform in space. For such a 

material, the STS maps at any voltage will have absolutely no contrast. Real materials on 

the other hand have disorder on the nanoscale. Such disorder can come from crystal de-

fects such as missing atoms; they can be intentionally placed in the crystal in order to 

achieve certain desired properties of the nanoscale material; or they can occur in the con-

text of chemistry where the nanomaterial being studied is not a perfect crystal structure. 

In each of these cases, the STS images will have contrast near the disorder that is present 

in the crystal. Typical examples are shown in figure 2. The contrast in the STS images is 

a measure of the disorder in the DOS at the nanoscale. The disorder in the DOS in turn 

affects fundamental properties of the material – for example, the mobility and resistance 

of a transistor is strongly influenced by the disorder in the DOS. Further, understanding 

the disorder in a material can give us basic scientific information on the nature of the 

electronic states of the material, one of the key goals of materials science. 

  

STS images in nanoscience 

In order to get the most useful information out of the STS images, one would like 

to know the following: given the different types of disorder present, how exactly do each 

of them influence the DOS in their vicinity? One way to do this would be to make a ma-

terial that has one type of disorder that is very dilute in space. We could then locate one 

of the disordered points and perform STS imaging in its vicinity. An example of this is 

shown in figure 3. In this instance, the crystal is a two-dimensional sheet of graphene, 

and disorder is created by replacing a few (<<1%) of the carbon atoms in the graphene by 

nitrogen [2]. We can control the number of nitrogen atoms present by synthesis, and so 

can isolate one nitrogen atom and 

examine its properties in STS imag-

es.  

The case of nitrogen-doped 

graphene described above is very 

special and not representative of 

most nanoscale materials. In most 

materials, the levels of disorder are 

much higher, and several types of 

disorder can be present at the same 

time. One of the chief reasons for 

this is that in order to produce a na-
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nomaterial with certain desired properties, it is often necessary to intentionally add disor-

der or non-crystallinity at a high level. A classic example is the high-temperature super-

conductor BSCCO. When “perfect” crystalline BSCCO is produced, the material is not a 

superconductor at all. To make it a good superconductor, one has to add about 20% ex-

cess oxygen into the material [3]. Studying the “perfect” crystal will be useless, since it 

does not have the desired superconducting property. Modern materials of interest to the 

nanoscience community are almost always in the state of high disorder. Such high 

amounts of disorder makes the STS images one obtains on these materials highly com-

plex. Three examples are shown in figure 4 – charge density wave ordered NbSe2 (un-

published), electronic nematic NaFeAs [1] and quantum dot array of CdSe (unpublished). 

Unlike nitrogen doped graphene, it is no longer possible to identify individual defects and 

their effect on the DOS from these images. 

 
 

Current state of the art in STS image analysis  

 The question arises as to how to extract the maximum meaningful information 

present in STS images such as the ones shown in figure 4. Since one cannot identify indi-

vidual defects, one has to use statistical tools to extract meaningful information. Current-

ly, the state-of-the-art method to analyze STS images is based on the Fourier transform 

(called FT-STS) [4]. A single defect produces a DOS pattern around it in space, and the 

FT of this pattern gives us information on the wavelengths present in the DOS pattern. If 

one imagines that a complex STS image such as the ones shown in figure 5 are made up 

of identical copies of individual patterns distributed in space, a FT of the entire image 

will be able to identify these wavelengths. This is shown for two materials in figure 5. 

Further theoretical analysis of the patterns then involves constructing models to explain 

the wavelengths observed in the FT images [5]. 

 The FT-STS procedure suffers from several significant drawbacks. The first is the 

so-called phase problem. When one takes the FT of patterns that are located randomly in 

space, each of the patterns when transformed picks up a phase factor exp(ik.r). When one 

adds together the many patterns that arise from each of the disorder points in the material, 

we obtain at each wavelength a sum of a large number of phases. This sum of phases is in 

general a number that fluctuates strongly and can take any magnitude from –N to N at 

each point, where N is the total number of impurities. This results in a large noise in the 

FT-STS images, as can be seen in figure 5. A related problem is that in the limit where N 
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is large, the magnitude of the phase 

factor averages out to zero! This gives 

rise to the very undesirable situation 

that the more data we obtain in real 

space (for large data sets), the useful 

information we obtain from FT-STS is 

not improved. 

 A second and equally im-

portant drawback of the FT-STS pro-

cedure is that it completely fails when 

multiple types of disorder are present 

in the material of interest. In such a 

situation, the FT-STS images mix to-

gether the patterns from each type of 

disorder, rendering the entire analysis 

useless.  

 Finally, the FT-STS procedure 

also fails when the basic motif in real 

space cannot be reduced to a few 

wavevectors in Fourier space. This is 

especially relevant in other microscopy 

techniques  for example, an optical image of a dense array of fluorescent proteins cannot 

be reduced simply to a few wavelengths in the image. In this case, one needs to perform 

the entire analysis in real space. 

 

An ideal analysis  

 An ideal analysis of the images will be able to extract the DOS pattern associated 

with each type of disorder at each energy by directly working with real space images. We 

will rely on the fact that the number of types of disorder is limited to a few per image. 

The key questions we would like to answer are: 

(a) What is the transformation that best represents the real space data (by best we imply 

that it represents the data with the minimum number of parameters possible) 

(b) Can we start with theoretical models of patterns, and optimize to figure out the best 

defect patterns that fit the spatial data?  

(c) Can we use the information gained at one energy to learn how to fit the data at other 

energies better? 

 

High-dimensional Data analysis 

We will to leverage recent theoretical and algorithmic developments in data science — 

specifically, in the area of high-dimensional data analysis. This area seeks to develop ef-

ficient computational tools that can uncover simple structure in large, noisy datasets, as 

well as fundamental theory to clarify when this is possible.  

 In particular, the problem of identifying the density of states pattern in the region 

of a defect maps almost perfectly onto a data analysis problem called dictionary learning 

[6]. In a nutshell, the dictionary learning problem is as follows: Given one or more input 

signals, identify the minimum number of basic building blocks (words in the dictionary) 
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needed to concisely ap-

proximate the input. That 

is, instead of designing a 

data representation analyt-

ically (as with Fourier or 

wavelet approaches), one 

attempts to learn a repre-

sentation from the data 

itself (see figure 6).  

 In applications in 

consumer image and video 

processing, these learned 

transformations substan-

tially outperform Fourier 

and wavelet approaches 

(see figure 7) [7-9]. The reason is that they can adapt to structure present in the specific 

input signal of interest, whereas Fourier approaches must cope with very broad, and 

sometimes unrealistic classes of signals (e.g., all low-pass signals). Tools developed by 

Wright’s group have been used to determine several such dictionaries in various contexts.  

 In the context of STS, the dictionary to be learned will consist of the DOS pat-

terns associated with different types of defects in the material — one per type of disorder. 

Compared to FT-STS, a data-driven approach should have the following advantages: (i) 

ability to directly learn across voltage scales in an integrated fashion, and hence produce 

more accurate estimates, even when only one type of disorder is present, (ii) ability to 

cope with multiple types of disorder (a situation in which traditional STS algorithms 

completely break down), and (iii) ability to seamlessly integrate scientific knowledge on 

the functional form of the disorder. 

 We will develop our 

approach in two stages. In the 

first stage, we will attempt to 

learn the DOS patterns in a 

strictly data driven fashion. For 

this, we will leverage recent 

advances in dictionary learning 

and sparse optimization devel-

oped in PI Wright’s group. In 

the second stage, we will at-

tempt to balance between al-

lowing the data to speak for 

itself and enforcing priors on 

the structure of the DOS pat-

terns.  

 

 

 

Data Science challenges and technical approach  
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 While learned signal representations have had tremendous impact in academic 

and industrial signal processing, thus far their impact on the natural sciences has been 

extremely limited. This is partially due to traditional communication and funding barriers 

to work at the interface of the data and natural sciences, which we will elaborate on be-

low. However, it is also due to the difficulty of the data science problem itself. For con-

sumer applications, one may be satisfied with visually appealing images. For applications 

in the natural sciences, however, it is essential that the computational tool be well-

structured, and with clearly delineated working conditions, since they need to be part of a 

chain that produces reliable scientific knowledge.  

 This is especially challenging for dictionary learning. The most natural formula-

tion is highly nonconvex, and the problem is NP-hard in the worst case [10]. Until very 

recently, no theory was available to explain which instances could be solved. Recently, PI 

Wright, in collaboration with Wang and Spielman, demonstrated the first efficient algo-

rithm for dictionary learning with a theoretical performance guarantee [10]. This algo-

rithm is based on the observation that if the number of dictionary elements is not too 

large, it is possible to reformulate the problem as a sequence of linear programs, which 

can be solved very efficiently using mature numerical techniques [11].  

 Wright’s group has also done highly impactful work on related data sciences 

problems such as robust matrix and tensor recovery [12, 13]. Because the observed data 

cube can be viewed as a large, noisy three-way tensor, these techniques may also be use-

ful for improving the estimates produced by our algorithms. The PI’s group has a strong 

track record of producing effective, useful computational tools with clear theoretical 

foundations. In addition to the specific technical advances outlined above, another impact 

of this project will be the introduction of modern data-driven signal processing tools into 

the microscopy community.  

 
Progress in 16 months 

 The two PI’s have already identified two outstanding graduate students who are 

midway through their doctoral programs. Both are already completely familiar with the 

techniques in natural science and data science respectively. Large amounts of microscopy 
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data already exist in PI Pasupathy s group, and basic analysis tools have already been de-

veloped in PI Wright s group. Motivated by this grant opportunity, the two groups have 

already begun an analysis of STS images from Cheung/Pasupathy using existing tech-

niques developed by Sun/Wright. An example of this analysis is shown in figure 8. We 

are able to optimize for the location of scattering centers in an individual STS image, and 

extract the DOS pattern associated with the defect (assumed to be only one type in the 

current iteration).  

 

A new themed cluster - extension to other microscopy techniques 

 The problem described above is of great generality in modern microscopy tools 

across the natural sciences. In the field of materials science and chemistry, there exist 

several tools that investigate materials in space as well as one or more additional dimen-

sions, usually energy or time. Typical examples are transmission electron microscopes, 

atomic force microscopes, and so on. All of these tools produce data that is similar in 

concept to the STS imaging described above. Another key technique that is directly rele-

vant is optical microscopy, especially as applied to biophysics, biochemistry and astron-

omy. Modern optical tools such as fluorescent labeling, near field spectroscopy and so on 

also generate complex, multidimensional dimensional data sets. In the case of chemical 

reagents and biological materials, the generators of optical signals can be close together, 

resulting in images that are functionally equivalent to STS images described earlier. This 

is also true of astronomical images in many cases. The data science techniques developed 

here can be directly used to address these problems as well.  

 We expect that several faculty in the natural sciences at Columbia and beyond 

will be directly able to use the data science techniques developed as part of this project. 

One of the most important outputs of the project will be a numerical toolbox, which is 

made freely available to interested researchers at Columbia and in the larger scientific 

community. We believe that the problem is of high significance across the natural scienc-

es and can support a new themed cluster in the IDSE.  

 

Why traditional funding will not fund this project currently 

 To be successful in this project, we require a hands-on application of cutting edge 

data science to modern microscopy imaging data, with active feedback between the two. 

This interdisciplinary requirement makes it difficult to fund using the traditional funding 

sources, either in data science or in natural science. The traditional funding sources in 

natural sciences (NSF, DOE) are willing to fund cutting edge microscopy projects. How-

ever, funding is limited to traditional natural scientists for experiments, and not for analy-

sis. Funding also exists for theoreticians in the natural sciences, but by and large they are 

not familiar with advanced techniques in data science. On the other hand, funding in the 

computational and statistical sciences is typically directed either towards methodological 

work, or traditional consumer-oriented imaging applications.  
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