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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most prevalent form of non-Hodgkin’s
lymphoma among adults, yet its causes and disease progression factors are poorly
understood. Prior work at Johnson & Johnson has indicated that patients with mood
disorders are less prone to develop DLBCL.
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Figure 1. a) Tumor subtype tree b) Mental iliness event code prevalence in cohorts of interest

NLP Approach - Contextual Representation Learning

We matched patients on demographic features and their length of time in the dataset
without an event that could leak information about a DLBCL diagnhosis. Word2Vec
embeddings are trained for events and used as input into the Patien2Vec framework to
learn interpretable, longitudinal patient representations and predict DLBCL outcomes.
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Figure 2. a) Patient2Vec architecture b) Attention weights from a correctly classified patient

Event Code Classification

We incorporated all event code types into a single model. Control and DLBCL cohorts
were one-to-one matched on demographic variables and diagnhosis time period.
Univariate analysis was applied to reduce feature space dimension from 15,519 to 87.
79 features were found in significantly greater proportions for the DLBCL cohort
(patients with mood disorders who go on to develop DLBCL in the dataset). The features
with the greatest disparities in cohort proportions are shown in Figure 3.
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Ensemble Classifier
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Figure 5. Classification results from an ensemble of our three methods
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