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Introduction

One way to model the sequence of a trader to help the decision making process in
financial company is to use people’s gaze information on multi-screens, which could
be recorded by using some specialized device such as GazePoint. However, it’s
expensive and not scalable. Our project provided a convenient and scalable solution
by directly using webcam to capture the face images and make real-time prediction.
To simplify the problem, we built nine classification models to predict which part of
the screen people is looking at. The prediction results are basically different time
series sequence, which could be further used for decision making process.

Figure 1. Two traders daily work

Architecture

The whole project pipeline consists of
three parts: (1) Observer, it controls
webcam to capture face images; (2)
Eyegaze comparator, it uses gaze point
device to provide labels; (3) Model, make
prediction in real time

Observer

Model:

We implement pre-trained neural nets, such
as ResNet[1], MobileNet[2], FaceNet[3] with
additional dense layers to do classification.
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Figure 2. Project Pipeline Figure 3. Model Pipeline

Evaluation

Model Performance:
Table 1. Experiment Result on our dataset

[
Model LR+TruncatedSVD ResNet MobileNet FaceNet
[ ] [ ] o [ ]
Inference Time almost 0 1s per img 0.1s per img 1.5s per img
o o o )
Accuracy 25.64% 53% 49% 45%
[ ] [ ] o
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Figure 4. Confusion matrix on MobileNet Model Figure 5. sample real-time evaluation result

Conclusion

This project provides insights on capturing gazing point with webcams. Using transfer
learning, which was proven useful given similar contexts and users, we model traders’
eye gazing areas when looking at the screen. While our experiment tries different
models, we decide to use MobileNet under the trade off between accuracy and

inference time.
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