Regulations/Controls Mapping Automation with Al

Data Science Institute COLUMBIA UNIVERSITY

Project Description

Deliver machine learning capabilities that automatically maps requirements from a number of cyber privacy and information security regulations to the security controls and associated assessment procedures defined in National Institute of Standards and **Technology (NIST) Special Publication 800-53**

Data Analysis

Most mapped obligations have only 1 or 2 regulation categories. Some categories tend to be dominated by a certain region, while others are more distributed. When analyzed by text, words like "information" and "data" are widely used by many obligations, and "maturity level" are rather dominated by a single region.

count	Word (bigram)	count	Word (unigram)
367	maturity level	488	information
170	personal data	466	data
166	level baseline	421	level
147	service provider	403	shall
104	level intermediate	368	maturity

Figure 2-1 : Distribution of number of categories for obligation Figure 2-2: % of appearance by region for Top 10 categories Figure 2-3: Top 5 Unigram/Bigrams on the obligations Figure 2-4: PCA Clustering graph for obligations, based on region

Patrick Kwon, Jong Hyuk Lee, Pranav Alva, Yinan Ling **Roshan Rao, Junghoon Woo, Akshat Palntikar** Sining Chen

Data Classification

The obligations are encoded, and fed into machine-learning based classification methods. For the Map/No Map classification, glove embedding vectors/TFIDF vectors and random forest classification methods are used. The resulting recall was 97.4%

For the Category classification, spacy embedding vectors and a bi-direcitonal LSTM model (based on tensorflow-keras) was used. The resulting accuracy was 97.9% (1,356 predictions exactly matched the actual mapped categories, among 1,385 rows)

% of appearance by region for Top 10 categories

Figure 3-1: Visualization of tree for Map/No Map classification with TFIDF vector Figure 3-2: Accuracy graph for train/validation set along 30 epocs.

Conclusion

The best performing obligation and category classification models both reach accuracy of over 97%. Alternative embedding/modeling methods such as BERT Embedding vectors, released by Google in 2018, and Attention Models with RNN might help improving the accuracy/recall better.

Acknowledgments (Calibri, 36 points, bold)

We would like to express our great appreciation to the KPMG Lighthouse team and Sining for their valuable feedback on the project.

References (Calibri, 36 points, bold)

National Institute of Standards and Technology Special Publication 800-53, Revision 4

Data Science Capstone Project with KPMG Lighthouse

