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Project Description Data Classification
Deliver machine learning capabilities that automatically maps requirements from a The obligations are encoded, and fed into machine-learning based classification
number of cyber privacy and information security regulations to the security controls methods. For the Map/No Map classification, glove embedding vectors/TFIDF vectors
and associated assessment procedures defined in National Institute of Standards and and random forest classification methods are used. The resulting recall was 97.4%
Technology (NIST) Special Publication 800-53 For the Category classification, spacy embedding vectors and a bi-direcitonal LSTM

model (based on tensorflow-keras) was used. The resulting accuracy was 97.9% (1,356

] predictions exactly matched the actual mapped categories, among 1,385 rows)
Data Analysis
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Conclusion
Word (unigram)| count| Word (bigram)| count Clustering between Region The best performing obligation and category classification models both reach
e accuracy of over 97%. Alternative embedding/modeling methods such as BERT
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information| 488 maturity level| 367 -~ Embedding vectors, released by Google in 2018, and Attention Models with RNN might
s US help improving the accuracy/recall better.
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Figure 2-1 : Distribution of number of categories for obligation National Institute of Standards and Technology Special Publication 800-53, Revision 4

Figure 2-2: % of appearance by region for Top 10 categories
Figure 2-3: Top 5 Unigram/Bigrams on the obligations
Figure 2-4: PCA Clustering graph for obligations, based on region



