Activism Campaign and Machine Learning

Data Science Institute COLUMBIA UNIVERSITY

Introduction and Problem Statement

The project's objective is to help the **Moelis** Activism Advisory team better advise their client companies that are the target of activist campaigns by predicting both the **objective** and the **likelihood of** success of an activist campaigns.

Models and Results

Based on the temporal nature of the activist campaign, we designed separate models for the activist's **objective**, the campaign's **outcome**, and finally the campaign's associated stock return. We use cross validation with time filtrations to ensure no lookahead bias.

Campaign Objective Model

Objective Campaign Objective Governance Demand Value Demand Objective Selected XGBoost Random Forest Random Forest Selected Model Model Precision Featu Importa Feature Add Directors: 0.49 Importance Officer Demand: 0.58 Generic Objective: 0.48 M&A: 0.68 Plot Precision Vote for Dissident: 0.76 Operation: 0.61 Operation: 0.74 Block M&A: 0.36 Demand : 0.58 Facilitate M&A: 0.51 Selected Confusion Matrix For Primary Objective 104 166 M&A Selected Confusion Matrix Model Performance 292 79 Operation Operation Predicted label M&A

accuracy=0.7145; precision=0.7374; recall=0.7871

Campaign Return Model

Authors: Junhao Wang, Dazun Sun, Jie Zheng, Zhiyuan Zhao, Michael She Industry Mentors: Peijie Shiu, Ryan Kelley, Benjamin Wallace Faculty Mentors: Howard Friedman

Outcome Examples			
mpaign objective lue demand overnance demand	Remove Directors M&A Operation		
oxy campaign result bard seat acquisition	Dissident Failure		
sidual return	2%		

Campaign Outcome Model

Data Collection and Feature Engineering

Campaign	Examples	Target Company	Examples
campaign name	Icahn x Exxon	company name	Exxon
campaign date	2015-01-01	sector	Energy
glass lewis support	true	beta	0.8
iss support	false	past 12m return	-5%
Activist Examples		earnings yield	6%
activist name	Icahn	has poison pill	false
past successes	5	added poison pill	true
past objectives	2 x Remove Directors,	tweet count	57
	1 x Divest,		
past tactics	Private Letter,	Market Benchmark	Examples
used tactics	Public Letter,	campaign date	2015-10-01
ownership percent	7%	market return	-4%

Production and Reporting

We productionize our models via an end-to-end data, model and dashboard pipeline that runs through data, feature engineering, model fitting and reporting. The final product is an **interactive dashboard** that the user can use to analyze a campaign.

Data	Factset Campai Database
Engineering	
Modelling	
Reporting	

Figure 1. Model Pipeline including Data, Features, Models and Reports

Conclusions and Recommendations

We conclude that campaign, activist and target company features can come together to be used to help predict relevant outcomes of interest for target companies.

Acknowledgments

Thanks to Peijie Shiu, Ryan Kelley and Benjamin Wallace for help with data collection from FactSet Thanks to Howard Friedman for helping with project management and supervision.

References

Denev, A. (2015). Probabilistic graphical models. Risk Books. Goranova, M., & Ryan, L. V. (2014). Shareholder activism. Journal of Management, 40(5) See Final Report for full list of additional references.

Data Science Capstone Project with Moelis & Company

The primary dataset was FactSet Shark Repellent, a proprietary corporate activism dataset from a financial services data vendor.

We supplemented this with Factset Pricing, Yahoo Finance and **Twitter** data sets to build a unified campaign, activist and target company data set for feature engineering.

