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1. Introduction
The goal of this project is to understand Twitter activity before and after the events

related to police use of force against unarmed black victims. We approach the problem g Av o [
by applying topic modeling and sentiment analysis techniques to understand the \/ - |
development of themes and their corresponding emotions. We have focused on over £

8.5 million tweets from August 2014 to cover the event of the police officer (Darren - reeonvenrs |
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Wilson) shooting a black victim (Michael Brown) that happened in Ferguson, MO.
y o _ Polc Oficars ramais e Figure 5 Sentiment Score of Tweets Figure 6. Positive & Negative emotions in topics
Over Time (Compound Score) (Compound Score)

A A i Ferason 4. LIWC categories across topics

Figure 1. Timeline of events for August, 2014 We used 41 categories around psychological constructs (e.g., affect, cognition, drives)
2. Topic Modeling and iterated for each tweet to find the list of words (word stems) of every LIWC

We used the Mallet - LDA model to cluster tweets into different themes to understand category by topic and time. Some of the categories by topic over time are shown in Fig.

the topics. The model with the maximum coherence grouped the data into 12 topics. The 7 and 8. P e U T T o Focs st teshotin
Word Cloud on Fig. 2 contains the most relevant terms for each of the 4 selected topics. "
Fig. 3 shows the evolution of topics throughout August, how they drove the . “\\,\AJ/\ A g /N
conversation, and how they were affected by different events. A WA NV A7
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white ot stand = Figure 7 shows that the ‘Funeral’ topic has an increase of Death words around
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: : : : : Michael Brown’s funeral, while Anger words increased for the ‘Solidarity’ Topic after
Figure 2. Word Cloud of tweet topics Figure 3. Time series of tweet topics . T ! . 5 y 10p
@ Robert Cohen @ @ @ P this event. In a similar way, Fig. 8 shows how words related to Power, Percept and
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Friendly Temple in St. Louis. John Ehrlich and childhood, even in death. care for our children. #MikeBrown, 5 . CQnC| usion
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response in Twitter. This might be due to the fact that users take time to absorb, process
and respond to situations through social media. One of the most important episodes in
this study is the Funeral of Michael Brown. No significant emotion was observed during
the event, but the spike after the funeral shows how the community was shaken.
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s even IN DEATH.
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