Optimal passenger-seeking strategy of taxi drivers with E-hailing

Introduction

- Taxi drivers usually have to spend 35-60 percent of their time on cruising to find the next potential passenger.

MDP for e-hailing drivers

- State $s = (l, t, I)$
 - Grid index
 - Time
 - Indicator $I \in \{0, 1\}$

- Action π:
 - stay
 - wait

- State transition (by a numerical example)

Data description

- GPS traces collected in Beijing on weekdays during Nov. 1st to Nov. 30th
- 53,673 e-hailing vehicles and 7,711,820 e-hailing orders
- 3-hour time intervals: morning peak (7AM, 10AM), off peak (10PM, 3PM), and evening peak (5PM, 8PM)
- Hexagonal grid setup with the length of the diagonal of a hexagon approximately 700 meters

Results

- Markov Decision Process (MDP)
 - Initial state
 - State transition matrix
 - State transition matrix
 - Policy π: a mapping from a state s and an action a to the probability $\pi(a|s)$
 - Value $V_{\pi}(s) = E \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right]$
 - Objective
 - Maximize driver’s profit within the time interval

Acknowledgements

This research was funded by Didichuxing under the contract No. University of Michigan/DiDi 17-PAF07456.