Adapting multi-armed bandits to real-life: Flexible models and approximate inference

In many problems in science, engineering and medicine, one observes the world and must sequentially:
- Decide which action to take next,
- Based on previous interactions with the world,
- In order to maximize future returns.

Randomized Controlled Trial Vs Multi-Armed Bandits
- Different potential actions to take (arms)
- Stochastic rewards: e.g., success/failure
- After observing previous actions and rewards
 - If parameters are known, pick optimal action
 - If parameters are unknown, exploration-exploitation tradeoff

Thompson sampling (TS) in practice:
- Pick (randomly) best arm, according to learned model
- Bayesian parametric modeling of the world
- Update model based on observed actions and rewards
- Draw a sample parameter from updated model
- Pick the optimal arm for such sample (“believe”)

We propose 3 novel improvements

1. **Dynamic-categorical rewards**
 - Models beyond stationary and Bernoulli rewards needed
 - User ignores the recommended movie, clicks on the trailer, or watches the movie
 - Users’ preferences evolve over time
 - We propose:
 - Categorical rewards via the softmax function
 - Dynamics via a general linear model on parameters
 - Sequential Monte Carlo combined with TS
 - Approximations to posterior accurate enough
 - Attain competitive regret performance

2. **Continuous-context dependent rewards**
 - State of the art:
 - TS for context-dependent continuous rewards
 - Based on linear-Gaussians distributions
 - We propose:
 - TS for complex scenarios, with unknown distributions
 - Nonparametric Gaussian mixture reward models:
 - A Bayesian generative process
 - Naturally aligned with the multi-armed bandit setting
 - It accommodates a very flexible set of distributions
 - Implementation of an efficient and flexible TS:
 - The nonparametric model autonomously determines its complexity in an online fashion,
 - As new rewards are observed for the played arms.
 - MCMC based inference via a Gibbs sampler

3. **Sequentially observed rewards**
 - In practice, a learning agent can only rely on
 - Partially observed sequences of rewards, e.g.,
 - after a movie is recommended,
 - the user ignores it or clicks on the trailer,
 - but the end-goal is whether she watches it.
 - We propose:
 - A Bayesian generative model for TS
 - Rewards are observed at different scales
 - Observations at scales \(s = \{1, \ldots, S\} \)
 - We consider a sequential and causal dependency
 - The reward at scale \(S \) is the reward to maximize:
 - How to maximize final reward,
 - as partial sequential observations are acquired

Approximate Bayesian Inference symposium @ NIPS2018

Bayesian nonparametrics workshop @ NIPS2018
https://arxiv.org/abs/1808.02932

RL under partial observability workshop @ NIPS2018