Minimizing HAI-Prevention Cost, with Probabilistic Guarantees

Elioth Sanabria and David D. Yao
IEOR Dept, Columbia Engineering

Healthcare-Associated Infection (HAI)

Healthcare associated infections (HAI) are estimated to cost US hospitals $9.8B per year. (Starting 2008, Medicare stopped reimbursing hospitals expenses due to HAI.) Costs for taking preventive measures are order-of-magnitude lower, but success rates are far from 100%; refer to the two tables below. We want to develop a machine learning (ML) classification scheme based on patient admission data only, as illustrated in the figure below.

<table>
<thead>
<tr>
<th>sources of infection (non-surgical)</th>
<th>cost per case</th>
<th>infection rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>catheter-associated urinary tract (CIU)</td>
<td>$996</td>
<td>1.15%</td>
</tr>
<tr>
<td>central line-associated bloodstream (CLAB)</td>
<td>$45,814</td>
<td>3.35%</td>
</tr>
<tr>
<td>clostridium difficile infection (CDIFF)</td>
<td>$11,205</td>
<td>0.37%</td>
</tr>
<tr>
<td>ventilator-associated pneumonia (VAP)</td>
<td>$40,144</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

A Jointly Optimized Classification-Prediction Scheme

The model involves two interlaced optimization problems. At the top is a cost minimization problem that explicitly accounts for the asymmetry between the cost of infection and the cost of prevention. The infection probabilities used in the cost model are solutions to a cross-entropy (CE) minimization problem that fits data with a suitable ML algorithm (e.g., logit regression, random forest, deep neural network, etc). Here, the challenge is to deal with the intrinsic bias in data: infected cases are only around 1-2% of all patients. Our approach is to add a weighting (or "oversampling") coefficient to the CE objective and make it a decision variable too, in the same spirit as a Lagrangian multiplier.

Convergence and Rate of Convergence

\[\phi^*: \text{optimal solution to the original problem;} \]
\[\hat{\phi}_n^*: \text{optimal solution to the "data-driven" version;} \]
\[EC(\phi^*), \hat{E}_n(\hat{\phi}_n^*): \text{corresponding objective values.} \]

Applying the Dvoretzky-Kiefer-Wolfowitz/Massart bound, we can derive

\[\hat{E}_n(\hat{\phi}_n^*) \rightarrow EC(\phi^*) \ a.s.; \text{ and } P(\hat{E}_n(\hat{\phi}_n^*) - EC(\phi^*)) < \epsilon \leq 4 \exp \left(- \frac{n \epsilon^2}{2K^2} \right). \]

\[C(\phi^*_n) \rightarrow EC(\phi^*) \ a.s.; \text{ and } P(\hat{C}(\phi^*_n) - EC(\phi^*)) > \epsilon \leq 4 \exp \left(- \frac{n \epsilon^2}{2K^2} \right). \]

Suppose \(\phi^*_n \) (for a given \(n \), sufficiently large) is applied to another data set of size \(N \), with the data being i.i.d. and following the same distribution as the original set, and denoting the corresponding cost as \(\hat{E}_N(\hat{\phi}_N^*) \). Then,

\[\hat{E}_N(\hat{\phi}_N^*) \rightarrow \infty \ EC(\phi^*) \ a.s.; \text{ and } P(\hat{E}_N(\hat{\phi}_N^*) - EC(\phi^*)) > \epsilon \leq P \left(|Z| > \frac{\sqrt{3N}}{2\delta} \right), \]

where \(Z \): standard normal, \(\delta^2 := K_n(1-\pi) + K^2_n \pi \).

Cost Savings Achieved

As shown in the left figure below, logit regression achieves about 10% reduction, DNN does about 20%, from the base case (no ML). The right figure shows the confidence interval associated with the DNN performance.

Research Support and External Collaborations

Agency for Healthcare Research and Quality, AHRQ-R01-HS024915-01 (PI: Elaine Larson)
Columbia University Medical Center, School of Nursing