Generative Adversarial Networks (GANs)

- Training data is a set of data items $X = \{x_i\}_{i=1}^n$, where each x_i is drawn from an unknown data distribution \mathcal{X}.
- A generative network G learns to map from a known latent space distribution \mathcal{Z} (typically a standard Gaussian distribution) to \mathcal{X}.
- Training is accomplished by introducing an additional network D whose goal is to distinguish from the generated samples to the real data items drawn from \mathcal{X}.
- The generator G is trained by solving a minimax optimization with the following objective.

$$L_{\text{gan}}(G, D) = \mathbb{E}_{x \sim \mathcal{X}}[\log D(x)] + \mathbb{E}_{z \sim \mathcal{Z}}[\log(1 - D(G(z)))].$$

This objective is minimized over G and maximized over D.

The objective is optimized when the distribution of $G(z)$ is the same as LPDD of \mathcal{X}.

Mode Collapse

- Mode collapse is one of the most prominent issues in optimizing GANs.
- It is a phenomenon that a GAN can only capture a few modes of \mathcal{X}.
- The generated samples lack the diversity as shown in the real dataset.

Modes in Metric Space

We consider the geometric interpretation of modes:

- The modes of a data distribution should be viewed under a specific distance metric of data items.
- Different metrics may lead to different partitions of modes.
- We address the problem of mode collapse in a general metric space.

Logarithmic Pairwise Distance Distribution (LPDD). We propose to use the pairwise distance distribution of data items to reflect the mode structure in a dataset.

- Consider a metric space (\mathcal{M}, d), and a distribution \mathcal{X} over \mathcal{M}.
- Two independent samples x, y are drawn from \mathcal{X}, and $\eta = \log(d(x, y))$.
- We call the distribution of η conditioned on $x \neq y$ the logarithmic pairwise distance distribution (LPDD) of \mathcal{X}.

Then, ideally, we want to solve:

$$\min_{G} \max_{D} \mathbb{E}_{x \sim \mathcal{X}}[\log D(x)] + \mathbb{E}_{z \sim \mathcal{Z}}[\log(1 - D(G(z)))].$$

s.t. LPDD of $G(z)$ is as the same as LPDD of \mathcal{X}.

Latent Space Distribution

We question the commonly used multivariate Gaussian that generates random vectors for the generator network. In the presence of separated modes, drawing random vectors from a single Gaussian may lead to arbitrarily large gradients of the generator, and a better choice is by using a mixture of Gaussians.

Theorem. (Bourgain’s theorem) Consider a finite metric space (Y, d) with $m = |Y|$. There exists a mapping $g : Y \rightarrow \mathbb{R}^k$ for some $k = O(\log^2 m)$ such that $\forall y, y' \in Y, d(y, y') \leq |g(y) - g(y')|_2 \leq \alpha \cdot d(y, y')$, where α is a constant satisfying $\alpha \leq O(\log m)$.

Our training algorithm contains two stages:

- Using Bourgain’s theorem to construct a latent space distribution \mathcal{Z} (mixture of Gaussians).
- Training generative network G with additional distance loss.

Expriements

We define distance loss to be

$$L_{\text{dist}}(G) = \mathbb{E}_{z, z' \sim \mathcal{Z}}[(\log(d(G(z)), G(z'))) - \log(z_i - z'_j)^2].$$

Our new objective is $L(G, D) = L_{\text{gan}}(G, D) + \beta \cdot L_{\text{dist}}(G)$. We still try to minimize it over G and maximize it over D.

Acknowledgements

We thank Daniel Hsu, Carl Vondrick and Henrique Maia for the helpful feedback. Chang Xiao and Changxi Zheng are supported in part by the National Science Foundation (CAREER-1453101, 1717178 and 1816041) and generous donations from SoftBank and Adobe. Peilin Zhong is supported in part by National Science Foundation (CCF-1703925, CCF-1421161, CCF-1714818, CCF-1617955 and CCF-1740833), Simons Foundation (#491119 to Alexandr Andoni) and Google Research Award.