Data Science Institute
COLUMBIA UNIVERSITY

Goal: Entity-specific sentiment analysis

Our goal is to develop a tool that generates a sentiment score for individual entities in any given review. We used a random subset of 15,000 restaurant reviews from the Yelp Open Dataset to validate our model.

![Figure 1. A motivating example. Sentiments towards different products varies within a review.](image)

Methodology

- We train a SpaCy ER model to be able to recognize food & beverage products in reviews.
- A product list is obtained from WordNet.
- We achieved a F1 score of 91% and novelty score of 97.17%.

- **Constituency Parsing** is used to split the comment into sentences.

- Parsing Rules are used to traverse the parse tree and determine the context surrounding each entity.

- The relevant contexts are inputted into algorithms like VADER and Stanford NLP to calculate sentiment scores for each entity.

- VADER (score of 0.25) outperforms Stanford NLP (score of -0.19) using our validation technique on a baseline rule.

Acknowledgments

We would like to thank Felipe Penha, Sining Chen, Manoel Vilela, and Vitor Hugo for their guidance and mentorship throughout the course of the project.

Validation using Yelp Star Ratings

Validating our process is a challenge due to the lack of target labels in our dataset. To quantitatively evaluate our model, we developed a rank-based validation method that uses Yelp stars as a proxy to determine the population's sentiment toward an entity.

![Figure 3. Illustration of end-to-end validation process.](image)

Our **best rule** (rank correlation of 0.58) is as follows: For each entity, start from the minimum sentence in parse tree containing the entity. While the sentiment is neutral, replace with next shortest sentence until we reach a non-neutral sentence. (or the root).

Example Results (Best Rule)

REVIEW:

“I had 3 tacos: the Standard which was my favorite, the pork was okay and the carne was typical, no surprises. I have to say that the Prickly Pear **margarita** was the absolute best!!!!!!”

<table>
<thead>
<tr>
<th>Entity</th>
<th>Relevant Context</th>
<th>Sentiment (VADER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork</td>
<td>the pork was okay</td>
<td>+0.23</td>
</tr>
<tr>
<td>Margarita</td>
<td>the Prickly Pear margarita was the absolute best</td>
<td>+0.52</td>
</tr>
</tbody>
</table>

Table 1. Example of end-to-end results

Conclusion and Future Work

Our methodology is able to generate sentiment scores on identified entities from an arbitrary corpus, with the help of a trained ER model. These steps have been packaged as open-source software at github.com/timjaya/neoway-brand-sentiment. Next steps include comparisons with other parsing methods, such as dependency parsing.

References

