Classifying Food and Beverage Establishments from Website Data

Gaurav Chawla, Jason Kuo, Nanshan Li and Andres Potapczynski
Neoway delivers customer insights based on firmographic data publicly available on the web.

We know Consumer Goods

Today there are hundreds of thousands of independent food/beverages operators and retailers in the USA.

Using industry specific data, Neoway helps uncover this landscape, whether you are looking to discover new sales opportunities, optimize your go-to-market approach, or maximize sales with existing customers.

SEE HOW IT WORKS
They want to uncover certain food/beverages categories from establishment webpages

- **Restaurant**
 - Type of Cuisine (American, Mexican, Chinese, etc.)

- **Supermarket / Grocery**
 - Organic / Non-Organic

- **Bar**
 - Predominant type of alcohol served (ex: wine, cocktail)

- **Liquor Store**
 - Predominant type of alcohol sold (ex: wine, cocktail)
For this, they have gathered close to 1M HTMLs from ~200K establishments

- Capturing the HTMLs for different establishments
 - Gathered the HTML contents via a web crawling bot

- Storing the HTMLs
 - Stored the HTMLs indexed by the initial URL in the cloud

- Adding metadata (for a subset)
 - Augmented the database with information from Google and others

- Running Ad-hoc methods
 - Labelling using keywords via RegEx
We designed a pipeline to help them improve the previous process

- **Tokenization**: Extracting useful information from the HTMLs
- **Anomaly Detection**: Removing non-informative HTMLs
- **Feature Extraction**: Creating useful features
- **Classification**: Train different classifiers for each task
We designed a pipeline to help them improve the previous process

- Extracting useful information from the HTMLs
- Tokenization
- Removing non-informative HTMLs
- Anomaly Detection
- Creating useful features
- Feature Extraction
- Classification
- Train different classifiers for each task
Store the tokenized data in a single DB to accelerate the model prototyping and shareability

Approach

- Extracted HTML body via XML parser
- Employed NLTK package for lemmatizing, handling punctuation and capitalization, etc
- POS tagging removed sentence filler words
- Created a parallelizable implementation for speed

Recommendations / Next Steps

- Generate a consolidated DB that contains all the tokens for each establishment
 - Use a NoSQL DB such as SQLite Dict or MongoDB
We designed a pipeline to help them improve the previous process

- Extracting useful information from the HTMLs
- Tokenization
- Removing non-informative HTMLs
- Anomaly Detection
- Creating useful features
- Feature Extraction
- Classification
- Train different classifiers for each task
Isolation Forests\(^1\) gives an anomaly score to each observation

Approach

- Construct a series of meta-features (length, # of unique tokens, etc.)
- Define weak thresholds on each feature
- Use Isolation Forests to determine the outliers

Recommendations / Next Steps

- Find the relationship of meta-feature via classification
- Understand the procedure’s impact on accuracy

We designed a pipeline to help them improve the previous process.

Extracting useful information from the HTMLs

Tokenization

Removing non informative HTMLs

Anomaly Detection

Creating useful features

Feature Extraction

Classification

Train different classifiers for each task
Use Topic Modeling and Doc2Vec to get a dense feature representation

Feature construction process

- **Words**
- **Topics**

TF-IDF Filtering

- Reduces the vocabulary from 16K to ~2K
- Decreases training complexity downstream

Topic Modeling

- Uncovers the general topics present in the data

Doc2Vec

- Generates a semantic dense representation

75x training time reduction

- margarita
taco
mexican
- chicken
rice
shrimp
twitter
facebook
instagram
- pizza
cheese
sauce
Understand the topics present in the data and create features that preserve its semantics.

LDA¹ and **NMF**² helped uncover topics in the data.

LDA Topic Examples with top words
- Topic 44: pizza, cheese, chicken, sauce, mozzarella, tomato, onion, italian, garlic
- Topic 46: margarita, tacos, taco, mexican, menu, location, specials, happy hour
- Topic 71: twitter, facebook, instagram, google, email, skip, press, online, menu, location
- Topic 76: chicken, rice, shrimp, sauce, beef, pork, fried, vegetable, onion, spicy

NMF Topic Examples with top words
- Topic 1: cheese, bacon, onion, tomato, lettuce, salad, cheddar, chicken, choice, potato
- Topic 4: pizza, slice, topping, crust, pepperoni, cheese, large, pasta, order, phone
- Topic 6: mexican, authentic, margarita, family, salsa, tacos, good, recipe, nachos
- Topic 83: good, greate place, time, friendly staff, family, atomoshpere, town, friend

Recommendations / Next Steps
- Augment establishment categorization based on the topics uncovered
- Use a smaller and dense set of features to save time
- Try state-of-the-art word embeddings like ELMo or Bert

Now, we designed a pipeline to help them improve the previous process

- Extracting useful information from the HTMLs
- Tokenization
- Removing non informative HTMLs
- Anomaly Detection
- Creating useful features
- Feature Extraction
- Classification
- Train different classifiers for each task
Overall Results and models used for each classification task

- **Establishment Type Classification**
 - Multi-class
 - Naive Bayes
 - F1 score: 90%

- **Restaurant Cuisine Classification**
 - Multi-label Classification
 - Binary Relevance with Logistic Regression (one-hot)
 - F1 score: 70%
 - Jaccard Similarity: 66%
 - MicroAvg - Pre: 86%
 - MicroAvg - Re: 60%

- **Supermarket / Grocery Organic vs Not organic Classification**
 - Binary Classification
 - NN
 - (64ReLu-128ReLu-64ReLu-2Sigmoid
 - Accuracy: 92%
 - Precision: 43%
 - Recall: 75%

- **Bar Type of Alcohol Classification**
 - Categorical Regression
 - Ridge Regression (per category)
 - RMSE Cocktail: 0.07
 - RMSE Wine: 0.02

- **Liquor Store Type of Alcohol Classification**
 - Categorical Regression
 - Ridge Regression (per category)
Overall Results and models used for each classification task

- **Establishment Type Classification**
 - Multi-class
 - Naive Bayes
 - F1 score: 90%

- **Restaurant Cuisine Classification**
 - Multi-label Classification
 - Binary Relevance with Logistic Regression (one-hot)
 - F1 score: 70%
 - Jaccard Similarity: 66%
 - MicroAvg - Pre: 86%
 - MicroAvg - Re: 60%

- **Supermarket / Grocery Organic vs Not organic Classification**
 - Binary Classification
 - NN
 - (64ReLu-128ReLu-64ReLu-2Sigmoid
 - Accuracy: 92%
 - Precision: 43%
 - Recall: 75%

- **Bar Type of Alcohol Classification**
 - Categorical Regression
 - Ridge Regression (per category)
 - RMSE Cocktail: 0.07
 - RMSE Wine: 0.02

- **Liquor Store Type of Alcohol Classification**
 - Categorical Regression
 - Ridge Regression (per category)
Cuisine classification carried considerable difficulties

Task: Multi-label Classification

- 99 non-mutually exclusive cuisines
- Implied hierarchy not present
- Multi-label output required
- Highly imbalanced data

Three main approaches:
- Binary Relevance
 - Assumes independence between cuisines
- Classification Chains
 - Output is added to input of the next classifier: n! permutations
- Multi-label KNN
 - Lazy KNN method

Metrics

- Hamming loss
- Jaccard Similarity Score
- Micro-average Precision & Recall
- F1 Score
Cuisine classification carried considerable difficulties

Results on 66 Regional Cuisines
- Binary Relevance approach:
 - Decision Tree
 - KNN
 - Logistic Regression
 - Multi-layer Perceptron
 - Random Forest

- Comparing results from different feature representations on Logistic Regression BR:
 - LDA
 - LDA + Doc2Vec
 - NMF
 - Doc2Vec
 - One hot encoding

Recommendations
- Clean up existing cuisine labels
- Develop potential hierarchy and orthogonal label framework:
 - Regional cuisines
 - Food
 - Restaurant format
 - Dietary restrictions
- Framework / spatial understanding of cuisines can be used to improve approach taken in this task
Overall Results and models used for each classification task

Restaurant Cuisine Classification
- Multi-label Classification
- Binary Relevance with Logistic Regression (one-hot)
 - F1 score: 70%
 - Jaccard Similarity: 66%
 - MicroAvg - Pre: 86%
 - MicroAvg - Re: 60%

Supermarket / Grocery Organic vs Not organic Classification
- Binary Classification
 - NN
 - (64ReLu-128ReLu-64ReLu-2Sigmoid
 - Accuracy: 92%
 - Precision: 43%
 - Recall: 75%

Bar Type of Alcohol Classification
- Categorical Regression
 - Ridge Regression (per category)
 - RMSE Cocktail: 0.07
 - RMSE Wine: 0.02

Liquor Store Type of Alcohol Classification
- Categorical Regression
- Ridge Regression (per category)

Establishment Type Classification
- Multi-class
- Naive Bayes
- F1 score: 90%
The Ridge Regression coefficients correctly capture the relevant words for each class.

Approach
- Run a regression model for each type of drink.
- Test different regularization schemes like Lasso, Ridge and Elastic Net.

Recommendations
- Use Gridsearch CV to determine the amount of regularization.
- Try non-linear models that output a class score (like NN with sigmoid).
Our models handle cases where the labels are incorrect

<table>
<thead>
<tr>
<th>Given</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cocktail, Wine)</td>
<td>(Cocktail, Wine)</td>
</tr>
<tr>
<td>(0.3, 0.1)</td>
<td>(0.5, 0.1)</td>
</tr>
<tr>
<td>(Cocktail, Wine)</td>
<td>(Cocktail, Wine)</td>
</tr>
<tr>
<td>(0.6, 0.2)</td>
<td>(0.2, 0.2)</td>
</tr>
</tbody>
</table>

Cecilia’s – Cocktail Bar

- Ranked Among The 10 Hottest Dance Clubs in Colorado by Best Things CO

Winward Tavern

- Established in 2012, Winward Tavern is a Fun Neighborhood Tavern. Formally known as Craig’s this Princeton Avenue Jewel is restored to accommodate everyone. Familiar, business professionals, singles, sports fans you name it you’ll find it at the Winward. With classic American fare. If Bones on tap a great wine list and daily lunch and dinner specials. You will find fresh great food, great service and a great time at a great price.

Our Vision

Winward Tavern is pleased to provide a family friendly environment. Where our guest can relax, socialize, and enjoy great food with neighbors and friends (old and new) enjoy a meal in our completely renovated dining room & bar.
Our pipeline has addressed all the previous limitations but still has elements to improve

<table>
<thead>
<tr>
<th>Ad-hoc limitations</th>
<th>Pipeline results</th>
<th>Next Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Heavily dependent on domain knowledge</td>
<td>▪ Derives domain knowledge based on labeled data</td>
<td>▪ Run ensemble algorithms like CatBoost</td>
</tr>
<tr>
<td>▪ Not adaptable to new labels</td>
<td>▪ Scalable to all types of problems</td>
<td>▪ Add weightings to deal with the minority class</td>
</tr>
<tr>
<td>▪ RegEx language hard to debug and error-prone</td>
<td>▪ Robust to mistakes and noise</td>
<td>▪ Create a small test set to validate performance while avoiding noisy labels</td>
</tr>
</tbody>
</table>
Q & A
Back-up
Isolation Forest assigns an anomaly score for each observation.

At each partition, it selects at random a feature and split.

Results of Isolation Forest in two clusters.
Use TF-IDF to construct a manageable vocabulary

As expected, the words exhibit a long-tailed distribution

TF-IDF Discussion

- Adjusting the document frequency bounds
 - Setting an upper bound removes uninformative common stop words such as food, order or menu
 - Setting a lower bound removes rare words such as foreign language terms that may overfit model

- Incorporate bigrams in the feature list
 - Captures additional semantics such as pizza sauce or cheese burger that may be lost just looking at single word counts

\[w_{i,j} = tf_{i,j} \times \log \left(\frac{N}{df_i} \right) \]

- \(tf_{i,j} \) = number of occurrences of \(i \) in \(j \)
- \(df_i \) = number of documents containing \(i \)
- \(N \) = total number of documents
LDA uncovers the topics present in the data

Example of LDA in a given corpus

LDA Graphical Model
NMF also finds topics in the data

Matrix Factorization

\[W \times H \approx V \]

NMF creates “additive” elements

\[\sigma_{ij} \]

Original
Doc2Vec generates a dense vector representation that preserves the semantics.

Doc2Vec Problem

Classifier

Average/Concatenate

Paragraph Matrix

- D
- W
- W
- W

Word2Vec Country – Capital Example

<table>
<thead>
<tr>
<th>Country</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Beijing</td>
</tr>
<tr>
<td>Russia</td>
<td>Moscow</td>
</tr>
<tr>
<td>Japan</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Italy</td>
<td>Rome</td>
</tr>
<tr>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>Spain</td>
<td>Madrid</td>
</tr>
<tr>
<td>Portugal</td>
<td>Lisbon</td>
</tr>
</tbody>
</table>

- : Center Word
- : Context Word

- c=0 The cute cat jumps over the lazy dog.
- c=1 The cute cat jumps over the lazy dog.
- c=2 The cute cat jumps over the lazy dog.
Multi-label classification metrics

Hamming Loss

$$\text{Hamming Loss} = \frac{1}{|N| \cdot |L|} \sum_{i=1}^{N} \sum_{j=1}^{L} \text{xor}(y_{i,j}, z_{i,j})$$

where $y_{i,j}$ is the target and $z_{i,j}$ is the prediction.

Micro-averaged Precision and Recall

- Microaveraging Precision $\text{Prec}_{\text{micro}}(D) = \frac{\sum_{c \in C} \text{TPs}(c)}{\sum_{c \in C} \text{TPs}(c) + \text{FPs}(c)}$

- Microaveraging Recall $\text{Rec}_{\text{micro}}(D) = \frac{\sum_{c \in C} \text{TPs}(c)}{\sum_{c \in C} \text{TPs}(c) + \text{FNs}(c)}$

Jaccard Similarity Score

$$J = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}.$$

F1 score

$$F1 = 2 \cdot \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$
Before, Neoway relied on ad-hoc methods which carried some limitations:

- Heavily dependent on domain knowledge
- Not adaptable to new labels
- Difficult to handle various forms of the same lemma
- RegEx language hard to debug and error-prone
- Unwieldy supporting large vocabulary

Defining a set of rules
- Determined the relevant keywords to look for:
 - Organic
 - ...
 - Tortilla
- Construct a set of RegExs to find the keywords
 - /\w._%+-]+\[/
- Run the search on the database

Inspecting the HTML
```html
<html>
<body>
  <h1>
    Welcome to Whole Foods
  </h1>
  ...
  <p>
    Find the best deals on organic apples
  </p>
</body>
</html>
```