

Peach Speech Analysis via NLP

December 10, 2020

Group Members:

Jung, Jinwoo Kwon, Hyuk Joon Lee, Hojin Lim, Tae Yoon Mackenzie, Matt

Advisor Groups:

Peter Thomas Coleman Professor, Psychology and Education Coleman@exchange.tc.Columbia.edu

Allegra Chen-carrel Program Manager, The sustaining Peace Project ac3922@columbia.edu

Outline

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Relationship between peacefulness of countries and languages used in news articles

Hate speech is a very active area of research, however, what about Peace Speech? Some research suggests that peace speech is the DNA of peaceful societies. We wanted to deepen our understanding about this claims through cutting edge data science techniques. We will analyze articles from different countries and study the relationship between peacefulness of countries and languages used in articles.

Project Description

Project

Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Engineering

Preprocessing &

Exploratory Data Analysis

- **Exploratory Data** Analysis
- **Preprocessing of text** data
- **Testing initial** hypothesis:
 - Is there a relationship between peacefulness of country and language used in the articles?
- **Besult of the initial** hypothesis testing was not promising
- Came up with possible reasons for them and tested those ideas
- Showing result of alternative hypothesis testing

Conclusion and

Solutions

Ì

- **Conclusion of initial** • hypothesis
- Details of the • conclusion and suggestions

Alt. Hypothesis and **Testing**

Data Overview

Overview

Project Description

Project Data

ID:

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Data Source and Structure

News on the Web (NOW)

"11.2 billion words from web-based newspapers and magazines from 2010 to present times"

The data originally came divided into 2 types of files, joined together by an

- Source files: contain metadata like publisher, website, country of origin, etc...
- Text files: contain the raw text for each news article.

We focus our analysis on the following twenty countries

Peaceful	Non-Peaceful	Other
Australia (AU)	Bangladesh (BD)	Ghana (GH)
Canada (CA)	Kenya (KE)	Hong Kong (HK)
Ireland (IE)	Nigeria (NG)	India (IN)
New Zealand (NZ)	Pakistan (PK)	Jamaica (JM)
Singapore (SG)	Tanzania (TZ)	Malaysia (MY)
United Kingdom (UK, GB)		Philippines (PH)
		South Africa (ZA)
		Sri Lanka (LK)
		United States (US)

Data Overview

Original Data Size

Overview

Project Description

Project Data

Preprocessing

Analysis

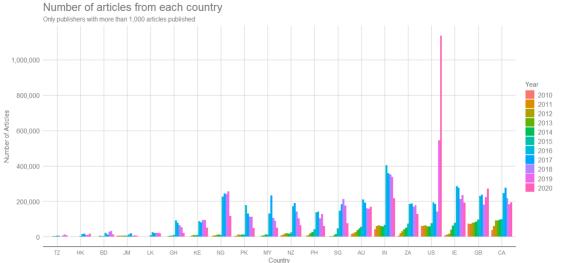
Solutions

Conclusion

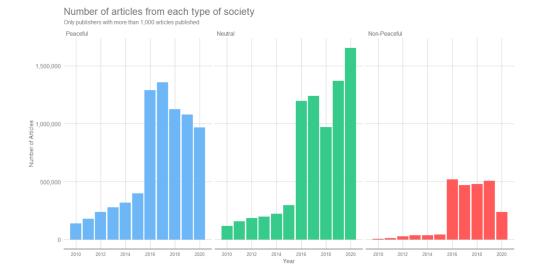
Data Science Capstone

Peace Speech

There is a large imbalance of data between countries and year.



After 2015, substantially more articles are captured due to changes in data collection procedures.



Data Overview

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Restructuring

Due to the large size of the dataset, we restructured the data to easily access any needed articles.

Restructured

Original

49 source files, 129 text folders, and each text folder containing at least 20 text files (each country and NAs).

Nested directories: **Country/Publisher/Year**; within each folder is one file for each article that belongs in that group.

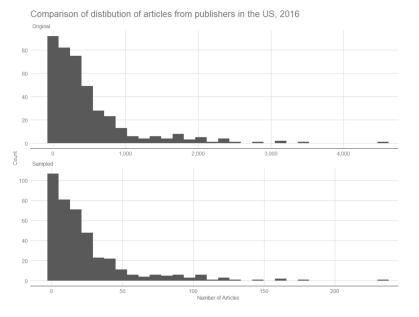
Resampling

We downsampled the number of articles we worked with to make our analysis more manageable.

Original Size: ~60GB, 20 million articles **New Size**: ~5GB, 1.5 million articles

Procedure

Filter out articles from publishers that have 1000 or less total articles. Downsample years after 2015 so that each year has a similar number of articles. Within each downsampled year, maintain the distribution of articles from each publisher so their relative representations remains the same.



Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Text Pre-processing

Need: unnecessary, noisy information that may affect later analysis

- phrases/sentence that are not related to the article's content
- ex. inducing readers to subscribe to their articles
- ex. suggestions of other articles

2 steps procedure:

- 1. General text pre-process
- 2. Model based text pre-process
 - N-Gram
 - Cosine Similarity Sentence Embedding

@@391241 <h>? 80k cash boost to make netball centre of excellence in Gwynedd <h>... Invalid e-mail. Thanks for subscribing ! Could not subscribe , try again later Netball in Gwynedd is set to get a cash boost AN ? 80,000 National Lottery cash injection will help turn Bangor into a " hotspot " for netball opportunity to spot and support gifted young players . It is forecast that the Dome will allow the creation @ @ @ @ @ @ @ @ @ ..."

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Text Pre-processing

1. General text pre-process

- Applies to all specific models be used
- Cleans the scraped news article into easily readable sentences
 - o html tags such as and <h>
 - o symbols such as {, }, <, >, \, (,), \n, and @
 - o convert symbols such as :, ;, ?, ! to periods
 - o @@@@@@@@@
 - imposed by data provider to prevent violating copyright laws

sample article

@@391241 <h>? 80k cash boost to make netball centre of excellence in Gwynedd <h>... Invalid e-mailThanks for subscribing ! Could not subscribe , try again later Netball in Gwynedd is set to get a cash boost AN ? 80,000 National Lottery cash injection will help turn Bangor into a " hotspot " for netball opportunity to spot and support gifted young players . It is forecast that the Dome will allow the creation @ @ @ @ @ @ @ @ @ @ ..."

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

2. Model based text pre-process

methodology used to automatically filters out the noisy information

N-Gram

- hypothesis : similar noisy patterns exist per publisher
- systemic way to check for particular **publisher-specific** patterns
- measure frequencies of phrases across 5-gram phrases
- remove sentences with particular phrases of > 25% per publisher

Cosine Similarity Sentence Embedding

- tokenize each sentence in a document using Sentence-Bert and HuggingFace
- compute cosine similarity between each sentence and document
- remove sentence found to have low level of similarity (used 0.95)

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Pros / Cons of N-Gram and Cosine Similarity

	Pros	Cons
N-gram (5-gram)	 Safer, which sentence to remove (clean document -> not remove any) Faster to run (~ 11 sec per 250 articles) 	 Fails for recurring phrases of less than 5 words Processing time increases exponentially (process per doc, depend on # of articles per publisher)
Cosine Similarity	 Able to delete phrases with less than 5 words Time complexity: linear in number of article 	 Remove sentences that are not spam Unable to control (pre-trained, vectorize) Slower to run (~ 6 mins per 250 articles)

Overview

Project Descriptio

Project Data

Preprocessing

Analysis

Solutions

<u>Conclusion</u>

Data Science Capstone

Peace Speech

Top examples of the removed sentences from 5-Gram [Sample Data]

	Publisher (num of articles)	Top 5 Frequency of phrase	Frequency	Sentences associated with phrase
	(num of articles)			
		from the times of india	156	more from the times of india / what better than donating blood and saving
on		More from the times of	154	lives gupta added from the times of india / sex ratio has improved from 1991 to 2001 and till now more from the times of india
	Times of India	guidelines by marking them offensive	82	help us delete comments that do not follow these guidelines by marking
ata	(91)	that do not follow these	81	them offensive / refrain from posting comments that are obscene defamatory or inflammatory and do not indulge in personal attacks us
		follow these guidelines by marking	81	delete comments that do not follow these guidelines by marking them offensive (and other variations of this sentence)
	Telegraph (52)	N/A	N/A	N/A
g		addresses all users on independent	20	verified email addresses all users on independent email address before being allowed to comment on articles(and other variations of this)
	Independent	for more information please read	20	for more information please read our comment guidelines / for more information please read our
	Online	hover your mouse over the	20	hover your mouse over the comment and wait until a small triangle appears on the right hand side
	(49)	our moderators will take action	20	our moderators will take action if need be
		and select flag as inappropriate	20	click triangle and select flag as inappropriate

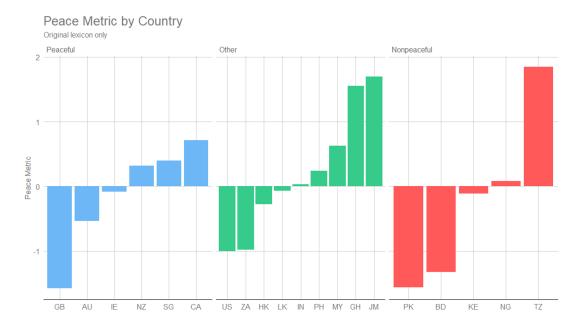
Lexicon Evaluation

Peace Metric

In order to test the validity of the lexicons, the project managers originally developed a metric for comparing the "peacefulness" of different countries. We used this metric as a basis for assessing if the lexicons are working properly at differentiating between peaceful, non-peaceful, and other countries.

Raw Peace Metric = (% of peaceful terms) - (% of conflict terms)

Once calculated for each country, we can obtain the peace metric by normalizing all the raw peace metric scores to have mean 0 and variance 0 across all the scores.



The scores do not work completely as desired.

Overview

Project Description

Project Data

```
Pre-
processing
```

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

COLUMBIA UNIVERSITY

Word Frequency Analysis

Overview

Project Description

Project Data

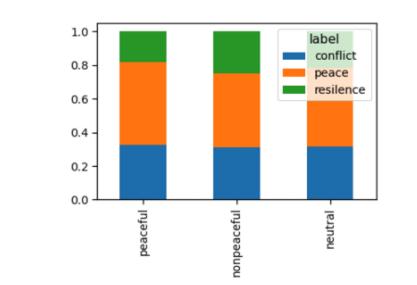
Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone



nonpeace

neutral

peaceful lexicons

son del relo solit sole relit month relations

0.8

0.6

0.4

0.2

conflict lexicons

poper referred at and the prest and fight at

Term

peace

neutral

nonpeace

1.0

0.8

0.6

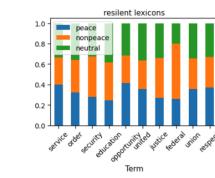
0.4

0.2

FORCE

Comparison of frequency of vocab. used in each categories for each peace group

- Initial hypothesis: there should be a correlation between the two
- Truth is that it is hard to tell if there exists any significant differences
- Performed ANOVA and p-value suggested that there is no statistically significant differences among groups



COLUMBIA UNIVERSITY

Word2Vec

8

-60

-40

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Visualization of clustering

• Converted pre-determined vocab. to vectors by training word2vec model using given articles

vl

ò

20

40

60

Implemented T-SNE for dimension reduction to 2D

-20

• Somewhat able to distinguish vocab. by categories with limitation

Potential Reasons for Failure of Initial Approach

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

International articles affect the result of the analysis

The unclear distinction among different categories of lexicons could be due to a mix of domestic and international articles

• Implement Domestic Filter using NER (Named Entity Recognition) method

 Run same word frequency and word2vec analysis after implementing the filter Flaws in predefined set of lexicons

Predefined set of lexicons were derived from dictionary and non-data scientific way

- Perform word count analysis to come up with new set of lexicons
- Validate new analysis through running peace score metrics

Classification by peace level for countries is flawed

There is a possibility that classification of peace level per country might be flawed.

 Implement text classification model and clustering models to compare articles and countries

 Extract important features out of models and reflect them on final conclusion

Domestic Filter

Overview

Project Description

Project Data

Preprocessing

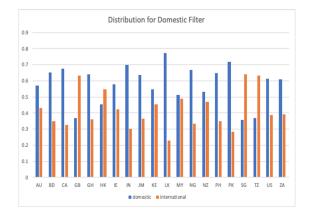
Analysis

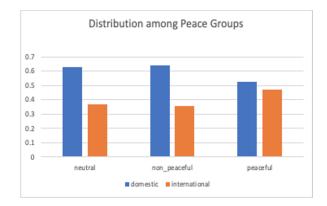
Solutions

Conclusion

Data Science Capstone General Methodology:

- Performed Named Entity Recognition (NER) analysis to extract the name of places that are mentioned in the article.
 - If the particular country where the article is from is mentioned at least once, then classified as Domestic article
 - If none of the places were recognized, classify as Domestic article
- Result of the Filter:
 - Countries that are classified as peaceful had slightly higher proportion of International Article than other groups





Domestic Filter - Result

Overview

Project Description

Project Data

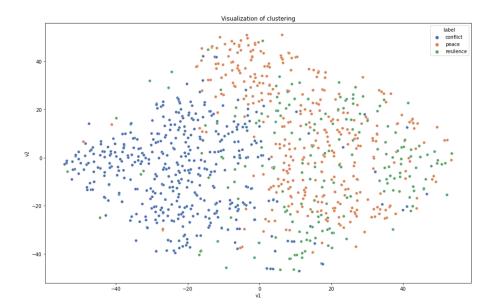
Preprocessing

Analysis

Solutions

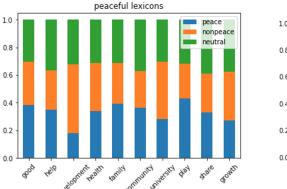
Conclusion

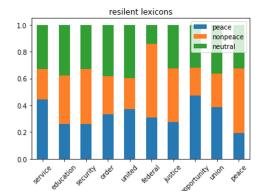
Data Science Capstone

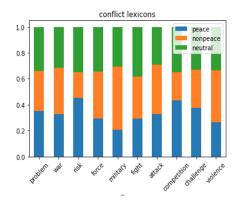


Performed Word2Vec & Word Frequency Analysis

- Result did not change as much as we expected
- Concluded that the international articles do not have much influence on analysis

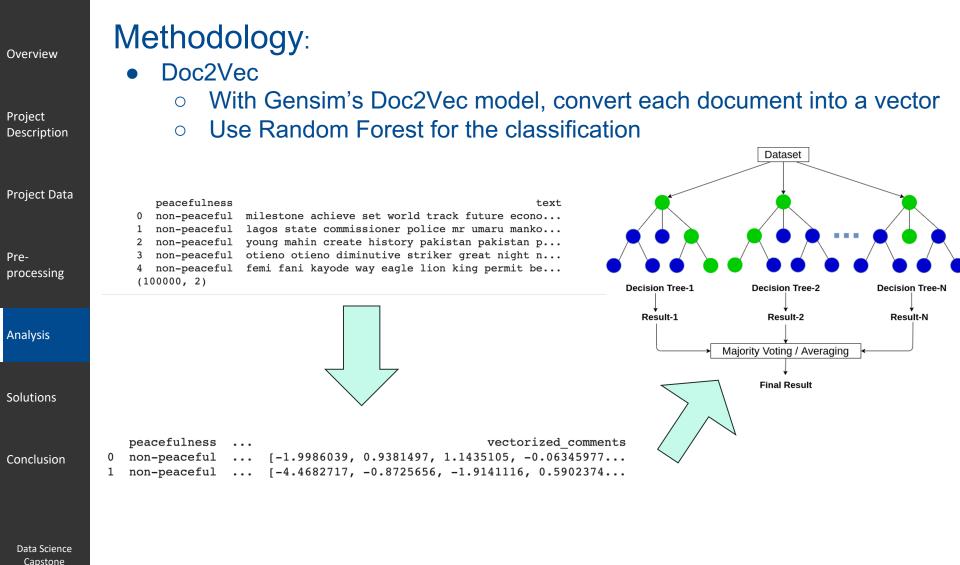






Columbia UNIVERSITY

Classification Models - Doc2Vec



Capsione

COLUMBIA UNIVERSITY

Classification Models - Doc2Vec - Results

		precision	recall	fl-score	support
Overview	non-peaceful	0.78	0.72	0.75	1021
	peaceful	0.73	0.79	0.76	979
Project Description					
	accuracy			0.76	2000
Project Data	macro avg	0.76	0.76	0.76	2000
Pre-	weighted avg	0.76	0.76	0.76	2000

Preprocessing

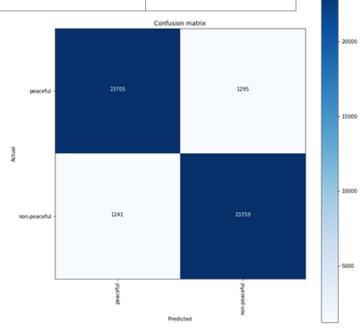
Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech



Classification Models - BERT

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

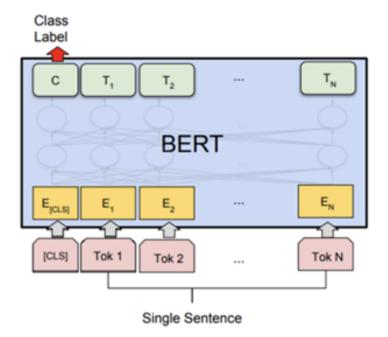
Conclusion

Data Science Capstone

Peace Speech

Methodology:

- BERT classifier
 - Import Pre-trained BERT model (bert-base-uncased)
 - Add a Fully connected linear layer for the classification, only takes the first token from the BERT model
 - Fine-Tune (train) the model with 100,000 randomly sampled data
 - Test the model with randomly sampled 50,000 data



COLUMBIA UNIVERSITY

Classification Models - BERT - Results

Overview

Project Description

Project Data

Preprocessing

Analysis

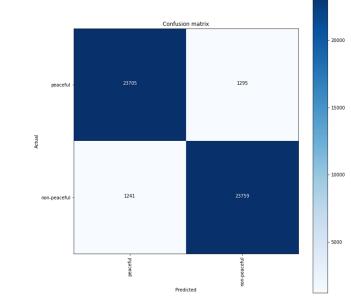
Solutions

Conclusion

Data Science Capstone

Peace Speech

precision	recall	fl-score	support
0.95	0.95	0.95	25000
0.95	0.95	0.95	25000
		0.95	50000
0.95	0.95	0.95	50000
0.95	0.95	0.95	50000
	0.95 0.95 0.95	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95



New Lexicon

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

New Lexicon from Term Frequency Analysis

Count the occurrence of each word in our sample, and compare what words are appearing more frequently in peaceful nations as compared to non-peaceful nations.

Selecting Words

Select the top **N** words by

frequency in each society.

For words that appear in both societies, pick a difference **D**. Compare the ranks of the common words, and if the difference in rank is at least D, append the word to the lexicon where the rank is higher.

Example with N = 5, D = 3 (not real data)

Term Frequency Analysis

Top 5 Words by Society

Rank	Peaceful		Non-Peacefu		1
капк	Term	Freq	Term	Freq	
1	fair	100	fair	80	1
2	good	50	bad	40	
3	great	25	horrible	20	
4	okay	15	okay	10	
5	bad	10	good	5	1

Lexicon Additions

Peaceful	Non-Peaceful
Term	Term
great	horrible

Difference in Rank of 3+

Peaceful	Non-Peaceful
Term	Term
good	bad

New Lexicon

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

New Lexicon from Term Frequency Analysis

WordNet

WordNet is a lexical database that provides groupings for nouns, verbs, adjectives, and adverbs into cognitive synonym sets (synsets). For a BoW approach, with no context we can infer the part of speech (PoS) from a word's synset.

For example, consider the synsets for the following terms.

Term from BoW	Synset - "word" (PoS)	PoS Implication
"educate"	"educate" (verb) and "train" (verb)	Verb
"Nigeria"	"nigeria" (noun)	Noun
"research"	"research" (noun), "inquiry" (noun), and "research" (verb)	Noun or Verb
"aaaa"	Empty	Nonsense

Final Selection Process

Using WordNet, we use the selection method explained on the previous slide (N = 250, D = 30) on the following sets of words:

- Non-nouns (filter out words where the synsets only contain nouns)
- Verbs only (filter for words where the synsets only contain verbs)

We perform a union of the results to obtain a new lexicon of 414 words.

New Lexicon - Result

New Lexicon from Term Frequency Analysis

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

To the right are the top 10 most frequent terms from the lexicon generated from the term frequency analysis

We can see that using our new

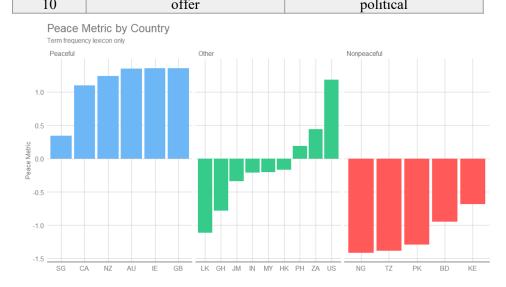
lexicon with the original gives a

zero for other countries.

peace metric that is clearly divisive

among peaceful and non-peaceful countries while being mostly around

Rank	Peace Lexicon	Conflict Lexicon
	Term	Term
1	look	state
2	think	minister
3	play	court
4	home	accord
5	open	project
6	really	bank
7	keep	order
8	season	force
9	mean	fund
10	offor	malitical



New Lexicon - Result

New Lexicon with RNN & Attention Weight

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Build RNN with Attention Layer for classification

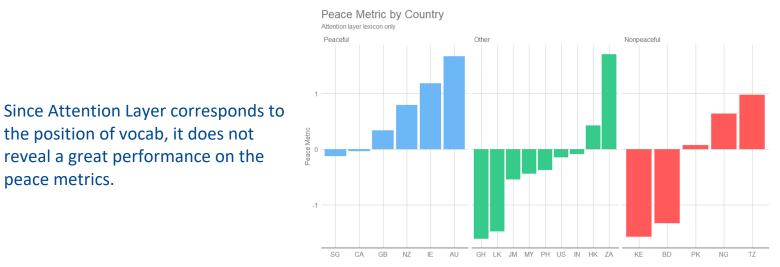
Retrieve Attention weight, match weights with vocab to extract lexicons which has highest average weight

the position of vocab, it does not

peace metrics.

reveal a great performance on the

Rank	Peace Lexicon	Conflict Lexicon
1	south	president
2	press	minister
3	content	south
4	independent	bank
5	please	university
6	alone	news
7	advertisement	star
8	estate	league
9	newspaper	photo
10	cape	town



Conclusion

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

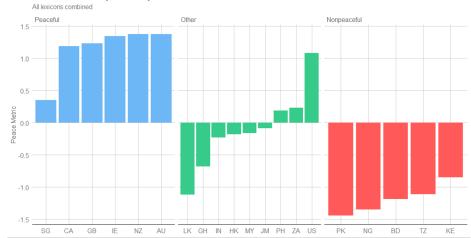
Peace Speech

To the right are the top 10 most frequent terms from each lexicon when we combine the three lexicon versions.

Augmented Lexicon

Rank	Peace I	Lexicon	Conflict Lexicon		
	Term	Version	Term	Version	
1	give	Original	state	Term Freq	
2	good	Original	president	Atten Layer	
3	look	Term Freq	minister	Term Freq	
4	think	Term Freq	court	Term Freq	
5	play	Original	accord	Term Freq	
6	help	Original	project	Term Freq	
7	home	Term Freq	south	Atten Layer	
8	family	Original	bank	Term Freq	
9	share	Original	university	Atten Layer	
10	health	Original	order	Term Freq	

Peace Metric by Country



26

Using all three lexicons, we get the best separation yet!

Conclusions

Overview

Project Description

Project Data

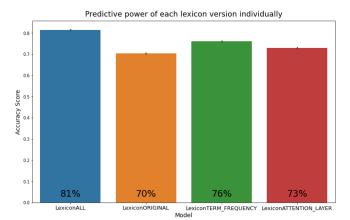
Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone



How much overlap is there between lexicons?

For each lexicon and all the lexicons combined, we train a logistic regression model to predict

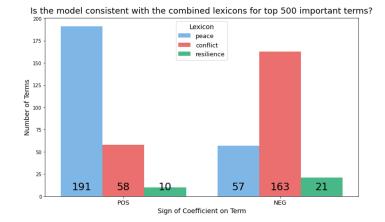
peaceful vs non peaceful countries using just the frequencies of the lexicon words.

Is the word present in this lexicon?			г
Original	Term Freq	Atten Layer	Freq
No	No	No	0
No	No	Yes	453
No	Yes	No	390
No	Yes	Yes	6
Yes	No	No	1931
Yes	No	Yes	5
Yes	Yes	No	18
Yes	Yes	Yes	0

On its own, each lexicon performs worse than all the lexicons combined.

Logistic Regression Models

Peace lexicon terms tend to drive the probability of being a peaceful nation up.



Peace Speech

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

Relationship between peacefulness of countries and languages used in news articles

sustainingpeaceproject.com

Img source: https://webstockreview.net/images/peace-clipart-word-wisdom-5.png

References

Overview

Project Description

Project Data

Preprocessing

Analysis

Solutions

Conclusion

Data Science Capstone

Peace Speech

- 1. Beltagy, I., Peters, M., & Cohan, A. (2020, April 10). Longformer: The Long-Document Transformer. Retrieved October 22, 2020, from https://arxiv.org/abs/2004.05150
- Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019, May 24). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Retrieved 2020, from <u>https://arxiv.org/abs/1810.04805</u>
- 3. Le, Q., & Mikolov, T. (2014, May 22). Distributed Representations of Sentences and Documents. Retrieved November 22, 2020, from https://arxiv.org/abs/1405.4053
- 4. Lin, Y., Michel, J., Aiden, E., Orwant, J., Brockman, W., & Petrov, S. (2012, July 01). Syntactic annotations for the Google Books Ngram Corpus. Retrieved 2020, from <u>https://dl.acm.org/doi/10.5555/2390470.2390499</u>
- 5. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013, October 16). Distributed Representations of Words and Phrases and their Compositionality. Retrieved November 24, 2020, from <u>https://arxiv.org/abs/1310.4546</u>
- 6. Miller, G. A. (1995). WordNet: A lexical database for English [Abstract]. *Association for Computing Machinery, 38*(11), 39-41. <u>https://dl.acm.org/doi/10.1145/219717.219748</u>
- 7. Piantadosi S. T. (2014). Zipf's word frequency law in natural language: a critical review and future directions. *Psychonomic bulletin & review, 21*(5), 1112–1130. <u>https://doi.org/10.3758/s13423-014-0585-6</u>
- 8. Reimers, N., & Gurevych, I. (2019, August 27). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. Retrieved 2020, from https://arxiv.org/abs/1908.10084
- 9. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . Rush, A. (2020, July 14). HuggingFace's Transformers: State-of-the-art Natural Language Processing. Retrieved 2020, from <u>https://arxiv.org/abs/1910.03771</u>
- 10. Wei, J., & Zou, K. (2019, August 25). EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. Retrieved October 22, 2020, from <u>https://arxiv.org/abs/1901.11196</u>