
Exploring Thematic Fit in Language 
with Neural Models

By  
Anjani Prasad Atluri , Samrat Halder, Mughilan Muthupari, 

Priyadharshini Rajbabu, Jake Stamell

Mentors: Yuval Marton, Asad Sayeed, Smaranda Muresan



Table of Contents

● Introduction

● Previous Work

● Our Contributions

● Experiments

● Results

● Key Takeaways

● Future Work

● Acknowledgement

2 | Exploring Thematic Fit in Language with Neural Model



Our goal is to use neural models for thematic fit. This aims 
to identify how well a given word or concept fits a into a role 
of an event

How would a human interpret potential role-fillers for the following 
sentence?

Sentence: The cake was cut with the [instrument] by me
Role-fillers: knife, scissors, floss, brick
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Introduction: Thematic Fit

Example sentence with roles

Sentence I cut the cake with a knife

Roles agent action patient instrument



Given the promising developments in pre-trained 
language models (e.g. BERT), one might ask whether 
these can be used directly for this task
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Introduction: Language Models vs. Thematic Fit

● When do language 
models fail?

● Why we need extra 
information about 
roles?



❏ Goal is to predict the appropriate word in a sentence given both the role of that 
supposed word and the surrounding context in the form of word-role pairs.

❏ Non-incremental role-filler (NNRF) model
❏ fails to distinguish two similarly worded sentences with different meanings 
❏ e.g. Kid watches TV and TV watches kid

❏ NNRF model is extended in three iterations:
❏ NNRF-MT (multi-tasking objective)
❏ RoFa-MT (Role-Filler Averaged model)
❏ ResRoFa-MT (Residual connections to solve vanishing gradient issues)
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Previous Work: Event Representation Models



❏ Random - currently used in ResRoFa-MT

❏ Non-contextual embeddings

❏ Word2vec

❏ GloVe

❏ FastText

❏ Contextual embeddings

❏ RoBERTa

❏ XLNet

❏ ERNIE 2.0 
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Embedding Approaches



❏ Do non-contextual embeddings outperform random embeddings?

❏ How important is tuning embeddings for this specific task?

❏ How does the role embedding size (input style) affect model 

performance?

❏ Do contextual embedding outperform non-contextual embedding?

❏ Rapid optimization of training speed and codebase

❏ Other explorations with ResRoFa-MT model architecture.
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Our Contributions



❏ Separate vs. Shared Embedding Layers

❏ Fixed vs. Tuned Random Embeddings

❏ Fixed vs. Tuned Non-contextual Embeddings

❏ Shrinking Role Embeddings

❏ Orthogonal Role Embeddings

Baseline : We use random embeddings as baseline of our experiments

Dataset: We use a 10% sample of the RW-Eng-v2 corpus for training (see 
appendix for additional details on the corpus)
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Experiments



❏ ResRoFa has a pair of embedding layers: 1) 
input words and roles; 2) target word and role 

❏ Second set is used for the prediction task

❏ Goal is to test whether a single set of 
embeddings can be used for both purposes 
(new model named RRF-Shared)
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Experiments: Separate vs. Shared Embedding Layers

Description
❏ Test performance for loss, word prediction 

accuracy, and role prediction accuracy are 
nearly identical; similar performance on 
thematic fit tasks

❏ RRF-Shared has ~50% fewer parameters than 
ResRoFa(~30M vs. ~67M)

Results

Model Initial 
Embedding

Fixed/Tuned Test 
Loss

Test Role 
Accuracy

Test 
Word 
Accuracy

PADO-all 
Correlation

McRae-all 
Correlation

ResRoFa Random Tuned 5.49 94.00% 29.66% 0.26 0.30

RRF-Shared Random Tuned 5.49 94.10% 29.66% 0.30 0.28



❏ Using RRF-Shared, we compare two random 
initializations of the model

❏ One where embeddings are held fixed and 
another where they are tuned
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Experiments: Fixed vs. Tuned Random Embeddings

Description
❏ Significant drop-off in role prediction accuracy 

when holding embeddings fixed (tuned-96%, 
fixed-68%) 

❏ Drastic performance difference on thematic 
fit tests (PADO, McRae)

Results

Model Initial 
Embedding

Fixed/Tuned Test 
Loss

Test Role 
Accuracy

Test Word 
Accuracy

PADO-all 
Correlation

McRae-all 
Correlatio
n

RRF-Shared Random Fixed 6.08 75.79% 29.66% -0.05 -0.01

RRF-Shared Random Tuned 5.49 94.10% 29.66% 0.30 0.28



❏ We initialize embeddings with non-contextual 
word embeddings: Word2Vec, FastText, GloVe

❏ We compare fixing vs. tuning embeddings
❏ Non-contextual embeddings can have out-of-

vocabulary (OOV) words
❏ Additional experiments test how OOV 

embeddings are initialized
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Experiments: Fixed vs. Tuned Non-Contextual

Description
❏ The role and word prediction accuracy 

improved when we fine tuned the 
embeddings as expected

❏ Also we observed performance improvement 
in the thematic fit tests with fine tuning

Results

Model Initial 
Embedding

Fixed/Tuned Test 
Loss

Test Role 
Accuracy

Test 
Word 
Accuracy

PADO-all 
Correlation

McRae-all 
Correlation

RRF-Shared GloVe Fixed 5.34 93.58% 29.66% 0.05 -0.09

RRF-Shared GloVe Tuned 5.34 94.15% 29.66% 0.37 0.23

RRF-Shared FastText Fixed 5.35 93.74% 29.66% 0.22 0.24

RRF-Shared FastText Tuned 5.34 94.10% 29.66% 0.32 0.31
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Experiments: Fixed vs. Tuned Non-Contextual
Embedding 
Source

OOV 
initialization

Fixed/Tuned Validation Loss Validation Role 
Accuracy

Validation Word 
Accuracy

Word2Vec Avg Fixed 5.98 96.22% 13.65%

Word2Vec Null Fixed 5.98 96.26% 13.61%

Word2Vec Avg Tuned 5.97 96.68% 13.87%

Word2Vec Null Tuned 5.98 96.67% 13.86%

FastText Avg Fixed 5.99 96.36% 13.44%

FastText Null Fixed 6.00 96.35% 13.43%

FastText Avg Tuned 5.98 96.64% 13.83%

FastText Null Tuned 5.98 97.64% 13.79%

GloVe Avg Fixed 5.99 96.03% 13.51%

GloVe Null Fixed 5.99 95.98% 13.51%

GloVe Avg Tuned 5.97 96.62% 13.87%

GloVe Null Tuned 5.98 96.65% 13.87%



❏ Prior models use size 300 embeddings
❏ Experiment a new model (RRF-Small Role or 

RRF-SR) that uses randomly initialized role 
embeddings of size 3, 30, and 300. 
❏ Size 300 role embeddings in RRF-SR 

corresponds to the same size as the 
baseline; however, the method of 
composition is different.

❏ Rather than using the Hadamard 
product, we now concatenate the 
embeddings
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Experiments: Shrinking Role Embeddings

Description
❏ While role accuracy is similar across the runs, 

shrinking role embeddings sees a 
deterioration in performance on loss and word 
accuracy

Results

Embedding Size Validation Loss Validation Role 
Accuracy

Validation Word 
Accuracy

3 6.13 96.56% 12.93%

30 6.10 96.57% 12.98%

300 6.20 96.50% 12.64%



❏ Extend low dimensional roles to one hot 
orthogonal vectors instead of random

❏ Randomly initialized embeddings can place 
some roles closer to each other in the vector 
space 
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Experiments: Orthogonal Role Embeddings

Description
❏ Orthogonally initialized embeddings perform 

similar to the other lower dimensional role 
embedding experiments

❏ Experimented on 10% data.

Results
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Key Takeaways

❏ Shared embeddings for input and target words/roles performs well with a drastic 
reduction in model size

❏ Strong performance on the validation/test sets does not necessarily equate to 
strong performance on external thematic fit benchmarks

❏ Tuning embeddings is vital for performance on thematic fit evaluation tasks

❏ RRF-Shared with non-contextual initialized embeddings does not significantly 
outperform randomly initialized embeddings

❏ Based on initial results, smaller role embeddings introduced in RRF-SR do not 
improve performance



❏ Data is sourced entirely from UK web sources/proceedings from the 20th century

❏ This is not a heterogeneous dataset and could have biases embedded in it

❏ Automatically parsing the corpus could introduce additional biases from the 
parsing algorithms

❏ At the very least, there is minimal validation of the data, which could hurt 
model performance

❏ Pre-trained language models have their own set of issues as well

❏ They are known to encode biases and can be affected by toxic data

❏ Environmental footprint of training models is enormous
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Ethical Considerations



❏ Incorporate a more efficient way to make it feasible to run ResRoFa model with 
contextual embeddings

❏ Integrate team 2’s work on the model architecture side
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Future Work
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Appendix

NNRF-MT RoFa-MT ResRoFa-MT



Corpus

❏ Rollenwechsel-English (RW-eng)
❏ Propbank approach to Semantic Role Labelling (SRL)
❏ Corpus is referenced from ukWaC and British National Corpus
❏ Two versions of the corpus (RW-eng-v1 and RW-eng-v2)

❏ This corpus applies dependency parsing algorithms combined with 
heuristics in order to perform the SRL task
❏ While this allows the creation of a large dataset, it also means 

the samples can be very messy
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Appendix



Experiment Results (models trained on 10% data)
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Appendix

Model Initial Embedding Fixed/Tuned Validation 
Loss

Validation Role 
Accuracy

Validation 
Word Accuracy

RRF-Shared Random Fixed 6.09 75.93% 29.63%

RRF-Shared Random Tuned 5.50 94.14% 29.63%

RRF-Shared GloVe (Avg. ) Fixed 5.52 93.59% 29.63%

RRF-Shared GloVe (Avg. ) Tuned 5.50 94.13% 29.63%

RRF-Shared FastText (Avg. ) Fixed 5.51 93.86% 29.63%

RRF-Shared FastText (Avg. ) Tuned 5.50 94.14% 29.63%

RRF-SR Orthogonal Role Tuned 5.59 93.45% 29.63%

RRF-SR 30-dimensional Role Tuned 5.64 93.26% 29.63%


