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Automatic event understanding

With the rapid increase in the amount of text data available in the
world, there has been a growing need to develop tools for automatic
understanding of events.
Currently, machines are still not intelligent enough to comprehensively
understand events, e.g. to inform financial decisions based on news
article headlines.
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Learning event representations

Machines can understand events by learning their representations,
which are composed by semantic role-filler representations.

Example: Uncle RogerAGENT makesPREDICATE ricePATIENT with
a rice cookerINSTRUMENT.
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Thematic fit

A desirable event representation is one that reflects thematic fit.
Given a verb v and an entity x , how well does v fit x in role r?
Example: (eat, apple, PATIENT) is more fitting than (eat, apple,
AGENT); (cut, knife, INSTRUMENT) is more fitting than (cut,
bowl, INSTRUMENT).
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Thematic fit rating data sets

Figure: Human scores range from 1 (unlikely) to 7 (most likely)

Padó et al. (2007): 216 balanced agent/patient ratings.
McRae (2005): 1,444 unbalanced agent/patient ratings.
Infeasible to directly optimize thematic fit due to limited data size.
Instead, train on (word, role) pairs to infer thematic fit.
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Hong et al.’s (2018) model

Figure: ResRoFA-MT Architecture (subsequently called Baseline)
Baseline: the current state-of-the-art thematic fit model.

Improved Tilk et al.’s (2016) model by adding:
1 a secondary role prediction task
2 residual blocks to prevent vanishing gradient
3 parametric ReLU (PReLU) layers to introduce positional weightings

Naturally interested in (predicted target) role and word accuracies.
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Measuring thematic fit

Thematic fit is measured by the Spearman’s correlation between
human scores and word predictions.
Example: (advise, doctor, AGENT, 6.8) from Padó et al. (2007).

Use (advise, AGENT) as input, along with padding tokens for other
word/roles.
From the word prediction, obtain the estimated probability that the
target word is doctor.
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Training data

RW-Eng corpus (Sayeed et al., 2018)
A large corpus of automatically labeled semantic frames from:

1 ukWaC (Feraresi et al., 2008)
2 British National Corpus (BNC Consortium, 2007)
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Potential issues of Baseline

Focus on three potential issues of Baseline:
1 target word input timing
2 non-sequential input
3 activation function

To provide an apple-to-apple comparison with Baseline, modifications
are made in a part-by-part basis.
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Modifying Baseline

To deal with the aforementioned issues, three new model variants are
created:

1 Target word input timing: Beginning
2 Non-sequential input: SeqAttn
3 Activation function: BaselineLeaky, BaselineShared

Modifications to input word/role pairs aggregation and non-sequential
input style can be found in the Appendix.
Modifications to the target objective, such as adding/removing tasks
are not considered this time, and are future directions of work.
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1. Modifying target word input timing

Figure: Beginning architecture

Beginning: introduces the target word + role in dense layer.
Reduces tensor factorization from 2 to 1, but introduces two
task-specific dense layers.
Potentially improves performance as event representation will have
information about the target.
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2. Modifying non-sequential input

All previous models did not take word-role ordering into account.
Experiments with sequence-based models to find out whether
sequential information might help improve the quality of event
representations.

This induces the need for modified input preprocessing and evaluation
scripts which ensure correct ordering of the event participants.

Based on experiment outcomes, models based on attention
mechanism (particularly self-attention) perform better than those
based on CNN, RNN, LSTM or bidirectional LSTM.
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The attention mechanism

The attention mechanism assigns weights to hidden states.
Concretely, given a sequence of hidden states (h1, h2, · · · , hT ) and
encoder contextual information ct for 1 ≤ t ≤ T , the attention score
is computed as α = softmax(e1, e2, · · · , eT ), where et = f (ct , ht) for
1 ≤ t ≤ T .
The attention score α is applied to the hidden states, producing a
weighted representation of hidden states

∑T
t=1 αtht .

In the absence of contextual information, it is usually assumed that
ct = ht . This is called self-attention.
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Applying the attention mechanism

Figure: SeqAttn architecture

One of the most common self-attention scoring mechanisms is
Bahdanau’s (2015) additive mechanism, which is utilized here.

et = f (ht) = tanh(Wht + b) for 1 ≤ t ≤ T .
Here, W and b are learnable parameters.
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3. Modifying activation function

I = 6 represents the number of input pairs.
J = 256 represents the embedding dimension.
Using a pre-trained model, BaselineLeaky and BaselineShared will
produce non-varying event representations regardless of input order.
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Model results on 10% data

Beginning does not show any good potential on thematic fit.
SeqAttn performs well on all metrics except role accuracy.
Modifying the PReLU layer boosts McRae but reduces Padó scores.
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Variants of SeqAttn

From the results, we decide to invest more time into sequential
attention models.
We experiment with the attention mechanisms summarized below.

Mechanism Scoring function Learnable parameter Model name
Location-based
(Luong, 2015) at = Wet + b W , b SeqAttnLocation

General
(Luong, 2015) at = eᵀt Wet W SeqAttnGeneral

Dot product
(Luong, 2015) at = eᵀt et None SeqAttnDotProd

Scaled dot product
(Vaswani, 2017) at = eᵀt et/

√
n None SeqAttnScaledDotProd

Also, we introduce a new task-specific attention mechanism.
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SeqTargetAttn

Figure: SeqTargetAttn architecture
SeqTargetAttn: task-specific attention mechanism (one for word
prediction and another for role prediction).
Inspired by Liu et al. (2009), who posits that task-specific attention
mechanism in a multi-task model setting may increase model
generalization and performance.
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Model results on 10% data

Attention models generally achieve higher thematic fit correlations
(except for McRae score for v2 data); SeqTargetAttn obtains the
highest Padó score for v1 and v2.
Using a smaller learning rate (i.e. 0.001) leads to better performance
of sequential models, but not for Baseline.
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Further modifications

Modification of activation function and ...
target word input timing (i.e. BeginningShared).
non-sequential input (e.g. SeqAttnShared).

Shared PReLU layers generally decrease accuracies and thematic fit
scores.
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Conclusions

Modifying target word input timing does not improve baseline model
performance.
Attention mechanisms generally improve thematic fit correlations.
PReLU layers generally give better results than Shared PReLU or
Leaky ReLU layers.
Code and model training instructions available: https://github.
com/15huangtimothy/bloomberg-event-embedding-team2.
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Future work

Examine possible reasons as to why sequential models generally have
low role accuracies.
Explore different target objectives and consider adding or removing
tasks.
Collaborate with Team 1 on the impact of non-random word/role
embeddings on model performance.
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Thanks!
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Appendix. Dense

Dense only differs from Baseline by substituting the mean aggregation
layer with a dense layer.

The rationale behind this change is to allow the neural network to
automatically find a functional form which best summarizes the
word-role representations.
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Appendix. WideDeep

WideDeep only differs from Baseline by including the one-hot
encoding of each input word and role in the input layer.

This architecture is inspired by the ubiquitous wide-and-deep learning
architecture (Cheng et al., 2016), which has been shown to perform
well on recommendation tasks.
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Model results on 1% v1 data
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Model results on 1% v2 data
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