Deep Learning in Cardiology

Adler Perotte, MD Pierre Elias, MD

NewYork-Presbyterian Description

Deep Learning Use Case: Screening for Amyloid

Amyloid Clinical Overview

- Protein folding disorder that leads to deposition in organs, causing heart failure over time
- ATTR cardiac amyloidosis (ATTR-CM) is caused by myocardial deposition of misfolded transthyretin (TTR or prealbumin), a circulating tetrameric transport protein for thyroid hormone and retinol
- Symptoms often present late as it's a slow-burn disease
- Diagnosis can be missed (uncommon cause of heart failure, fat pad biopsy has many false negatives, PYP scanning still not very prevalent)
- But for the first time in the history of the disease, we have therapies (and they are \$\$\$)
- No screening test is available (remains the holy grail)

Figure 2. ECG data and artificial intelligence algorithm. AFIB indicates atrial fibrillation; AFL, atrial flutter; QTc, corrected QT interval; and 2D, 2-dimensional.

Deep Learning Models for Detecting Amyloid

Alex Wan, Han Wang, Junyang Jiang, Shengqing Xia, Yuge Shen

Main Tasks

- ECG Data Simulation
- Model Training
- –For Image
 - 2-D Convolutional Neural Networks
 - Residual Neural Networks based on paper AutoECG
- -For Waveforms / Time Series
 - Convolutional Recurrent Neural Network
- Hyperparameter Tuning
- Future Work

Data Format

10s of ecg data 250 Hz 12 Leads Data shape of a single sample: 2500 * 12

Synthetic Data

- 5000 Samples in total
- 2500 Positive
- 2500 Negative

Real Data

- 5399 Samples in Total
- 1214 Positive
- 4185 Negative

ECG Simulation

Using Neurokit 2 as Base Method

QT duration Corrected QT duration men: ≤ 0,45 s Corrected QT duration women: ≤ 0,47 s The reference level for measuring ST-segment deviation (depression or elevation) is not the TP interval. The correct reference level is the **PR segment**. This level is also called **baseline** level or **isoelectric level**.

Abnormal ECG

Model Training

- 2D Convolutional Neural Network (CNN)
- Residual Neural Networks (RNN)
- Convolutional Recurrent Neural Network (CRNN)

Motivation

Goto et al. proposed a very powerful and complex 2D CNN based model for Cardiac Amyloidosis using ECG

However..

- Is such huge neural network really necessary?
- Could we simplify complexity in this computational models?
- Could we use other modern Deep Learning models for ECG?
- Should we treat ECG data input as image or waveforms when applying Deep Learning?

Α

в

(A) Structure of the multi-2D-CNN module and (B) the full network structure

2D CNN Model

Result of 2D CNN on Real Data

	Validation Accuracy	Validation Loss	AUC
Best	0.83	0.42	0.84
Average	~0.82	0.43-0.44	0.82-0.83

Residual Neural Networks based on paper *AutoECG*

Ribeiro, A.H., Ribeiro, M.H., Paixão, G.M.M. et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun 11, 1760 (2020).

Model Adjustment

Data in paper:

- 12 leads
- 7s to 10s
- 300 HZ to 600 HZ resampled to 400HZ
- Zero-padded to 4096 numbers
- Output six probabilities of six types of disease
- 2,322,513 ECG records from 1,676,384 different patients of 811 counties

Model results in paper:

	Precision	Recall	Specificity	F1 score
	DNN	DNN	DNN	DNN
1dAVb	0.958333	0.821429	0.998748	0.884615
RBBB	0.918919	1.000000	0.996217	0.957746
LBBB	1.000000	1.000000	1.000000	1.000000
SB	0.789474	0.937500	0.995068	0.857143
AF	0.846154	0.846154	0.997543	0.846154
ST	0.923077	0.972973	0.996203	0.947368

Our Data:

- 12 leads
- 10s
- 250HZ
- Zero-padded to 4096 numbers
- Only output probability of normal/abnormal
- 5399 ECG records from U.S. patients

Results for Adjusted AutoECG Model

100 epochs with dropout rate 0.5 and learning rate scheduler

	Best Validation Accuracy	Best ROC AUC Score	# Model Parameter
Baseline	80.95%	0.84	~49,000,000
Adjusted RNN	81.91%	0.86	~6,400,000

NewYork-Presbyterian W ColumbiaDoctors

RNN - Transfer Learning

Added Layers

RNN - Transfer Learning Results for Real Data

	Validation Accuracy	AUC
Best	0.77	0.82

- NewYork-Presbyterian

Convolutional Recurrent Neural Network for ECG

Input: 2500×12 raw waveform Convolution in the time domain

Compared with Baseline 2D CNN model (Goto et al, 2020)

	Validation Accuracy	ROC AUC Score	# Model Parameter
Baseline	80.95%	0.84	~49,000,000
Adjusted RNN	81.91%	0.86	~6,400,000
CRNN	83.14%	0.86	~909,000

CRNN outperforms baseline model with a much lower model complexity!

NewYork-Presbyterian Description

CRNN - Ablation Study

	Validation Accuracy	ROC AUC Score	
CRNN w/ LSTM	0.8031	0.7956	
CRNN w/ GRU	0.8300	0.8430	
CRNN w/ GRU & Dropout	0.8314	0.8578	
CRNN w/ GRU & Dropout & regularization	0.8295	0.8564	
Training and validation accuracy 100 100 100 100 100 100 100 10	Taining and validation accuracy	Handling overfitting is ver important in our task	у
Model w/ low Dropout rate (0.2) Model w/ h	nigh Dropout rate (0.5) - Ne r	wYork-Presbyterian 🖾 ColumbiaD	octors

Hyperparameter Tuning

PyTorch Ignite Framework + Optuna

PyTorch Ignite is a high-level library for PyTorch that helps you write compact, but full-featured, code in less lines.

Optuna is a hyperparameter optimization library applicable to machine learning frameworks .

Combining the two of them allows for automatic tuning of hyperparameters to find the best performing models.

NewYork-Presbyterian Description

Tuning Design Choices

- Key Parameters
 - Kernel Number
 - Dropout Rate
 - Optimizer
 - Initial Learning Rate

- Other Considerations
 - Validation AUC
 - Early Stopping
 - Learning Rate Scheduler

Automatic Tuning 2DCNN on Real Data

Best Params	Conv1_1: 7 Conv1_2: 1 Kernel #: 64 Dropout: 0.35 Opti: AdamW Lr: 0.00199
Best Validation Accuracy	0.8340
Best Validation AUC	0.8457

- NewYork-Presbyterian **W** ColumbiaDoctors

Possible Future Work

Model Visualization Using CAM (Class Activation Map): Using the FINAL convolution feature map followed by Global Average Pooling (GAP) and softmax activation function.

-NewYork-Presbyterian

Thank You

HewYork-Presbyterian Decomposition