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Problem definition

Mosaicism: mutations in DNA that arise after fertilization
Can lead to autism, congenital heart disease
e Need to separate genuine mutations from errors/artifacts
o Artifacts arise from improper sequence reading and alignment

e Current methods are manual; we aim to use deep learning
o Training set preparation is a major task as we lack large labeled datasets (for true mosaics)
o Need to generate trainable representations of our data as well
o Modify and choose parts of existing frameworks (such as DeepVariant)



Mosaics, artifacts, germline variants

e Mosaics, artifacts have a low variant allele fraction (VAF)
o VAF: proportion of non-reference reads
o One is a mutation and one is an rare error, hence low VAF

e Germline variants: mutations in germ cells (which give rise to gametes),

passed to offspring
o VAF is 50% (heterozygous) or 100% (homozygous)
o Either one parent is different or both are
e Our dataset simulates mosaics (positives) and uses real artifacts (negatives)

o Heterozygous germline variant reads are downsampled so their VAFs decrease to match the
mosaic VAF distribution
o Mendelian errors become our negatives, and are in fact mostly artifacts



Data and genomics file formats

BAM (SAM, CRAM): binary Sequence Alignment File, stores which read
segments are mapped to which sections of the genome (and how well)

VCF: Variant Call Format, contains the sites where the sequence differs from the
reference

We worked with the Ashkenazi Jewish trio of father, mother, and son. Data from
Genome in a Bottle (GIAB) https://www.nist.gov/programs-projects/genome-bottle



https://www.nist.gov/programs-projects/genome-bottle
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DeepVariant Workflow
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Generating positives

|ldentify heterozygous germline variants with Python package ‘scikit-allel’
Use Python package Pysam to extract reads from BAM

e Downsample reads to match the VAF distribution of mosaics

o Het germline variant VAF: binomial with mean 0.5
o Mosaic VAF: binomial with mean VAF << 0.5, square of mean VAF modeled as a Beta

distribution
o Control which reads are included

e Need to match VAFs otherwise neural networks will use this trivial difference
to distinguish them



Generating negatives

e Generate new VCFs which include low-VAF variants with special BCFtools
parameters

e Search for Mendelian errors - variants in child not explained by either parent

o Work with VCF files of the trio
o Look for VAF <0.4

e Most Mendelian errors found with this method will actually be artifacts
o This is what we want!

e Found chromosomes and positions where variants existed and exported them
intoa TRUTH_VCF

o Input to make_examples()



Generating pileup tensors

e DeepVariant: analysis pipeline to call germline variants from sequences
e make_ examples() generates pileup “images” or tensors with 6 channels, and
adds labels (which we need to modify)
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e Jason Chin’s VariantNET generates 15x4x3 tensors
o For the reference: 7 bases flanking the variant on each side, one-hot for the presence of 4
bases (hence 4 rows)
o 2 other tensors track differences between reference and sequence



Sequence alignments
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Training

Plan was to train on Inception (CNN) through DeepVariant

Currently working on Jason Chin’s VariantNET, a simpler CNN
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Challenges faced

e Low-VAF VCF generation takes ~15 hours for a 50GB BAM
o Child BAM was corrupted; alternative file is 600GB and has the necessary read depth, but
time required is prohibitive
o Proceeded with packaged VCFs though they do not have low VAFs
e DeepVariant has few (and specific) parameters; could not adapt for our

purposes
o Attempted to make tensors with TRUTH_VCF, standard and generated TRUTH_BEDs, BAM
with both positives and negatives, only positives, and all reads
o 2 main errors with no solutions/documentation; generated a new .bai as directed for one error,
to no effect
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