Active Learning for Computer Vision

Columbia Capstone Project & KPMG Digital Lighthouse
Many AI applications rely on “humans in the loop” to function at a high level of accuracy.

Human-in-the-loop systems take two forms, both of which contribute to lower gross margins for many AI solutions.

1. **State of the art requires manually curated datasets**
 - This process is laborious, expensive, and the biggest barrier to enterprise adoption of AI
 - Maintaining accuracy requires new data to be continuously captured, labeled, and fed back to the system
 - In a race to useable data, labeling quality and quality assurance becomes a bottleneck

2. **Human reviewers augment AI-based systems**
 - AI models require human intervention especially as regulations become more stringent
 - Issues of safety, fairness, and trust demand human oversight, and is linked to data labeling
 - Deciding what needs human evaluation is the key to minimizing costs

© 2019 KPMG LLP, a Delaware limited liability partnership and the U.S. member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative (“KPMG International”), a Swiss entity. All rights reserved.
Key Objectives

- **Stage 1**: Evaluate key active learning approach given a literature review
- **Stage 2**: Determine performance metrics to compare active learning approaches
- **Stage 3**: Build a modular package to easily use different active learning strategies
- **Stage 4**: Connect pipeline to a GUI
- **Stage 5**: Recommend approach/framework for future application of active learning
Out of the active learning strategies we reviewed, we chose 7 to experiment since they are suitable to apply to image classification task.

We implemented 3 semi-supervised learning algorithms, and researched the idea combining semi-supervised learning and active learning in our method.
Freiburg Groceries Dataset

- Consists 5,000 images from 25 different classes of groceries, with at least 97 images per each class.

- Images were taken from real-world stores and each image came with different angle, light condition, degree of cluster.

- Reflecting a true scenario of what people would see everyday at a grocery store so it suited our needs for a dataset that people would use to build machine learning models for image classification tasks.
Statistic Based Query

1. Least Confidence Query

Least Confidence Query is the simplest and most commonly used query strategy. The idea behind that is get the ground truth of instance that model feel most uncertain.

\[x^*_\text{Query} = \arg \max_x 1 - P_a(\hat{y}|x) \]

2. Margin Query

Least confidence query only consider the information of highest posterior probability and throws away the information of inference probability of remaining classes. What margin query do is finding the instances that model hesitates between two classes.

\[x^*_\text{Query} = \arg \min_x P_\theta(\hat{y}_1|x) - P_\theta(\hat{y}_2|x) \]

3. Entropy Query

Entropy is a more comprehensive way to consider the distribution of predicted probability.

\[x^*_\text{Query} = \arg \max_x - \sum_i P_\theta(y_i|x) \log P_\theta(y_i|x) \]
Building a loss model upon original classifier to predict the classification loss of unlabeled data

Higher loss means more uncertainty to the data
Distribution Based Query

K-Means Query

1. Query all centroid in the embedding space
2. Assume a centroid will cover the information of all data in its cluster
2 K-Centers Greedy Query

- Map all unlabeled data and labeled data to the embedding space
- Greedily Query the unlabeled data point who is most far away from its nearest labeled data

3 Confident-Coreset Query

- Same query logic as K Center Greedy
- Adding predicted loss into account when calculate the distance from nearest labeled data
Semi-Supervised Learning

1. Noisy Student
 - Teacher model create pseudo label for student model to learn
 - Student become teacher model for next round

2. Temporal Ensembling
 - Pseudo Label is the moving average prediction of all previous teacher models
Semi-Supervised Learning

3 Mean Teacher

- Teacher Model is not the student model of last round
- The Weights of Teacher Model are the moving average of all previous student model’s weights
Task for Each Round:
1. Train on current labelled dataset (also unlabelled data if using semi-supervised learning)
2. Inference on test data and report metrics
3. Predict and Encode unlabelled data
4. Query the unlabelled data and add them to labelled dataset
Experiments: Active Learning

Learning Curve (weighted F-1 score) for AL Strategies

- Out of the 7 active learning strategies we tested, **margin, least confidence (uncertain), entropy sampling** achieved higher AUC than uniform random sampling.
- **K-center greedy** consistently outperforms random sampling when there are more labeled data available.
Experiments: Active Learning

Diversity Measure - I

- Higher variance in number queried for each class means lower diversity
- Loss sampling, confident coreset tend to query images from a few classes
- **K-means** sampling queries most diverse images batches
- **Margin** sampling queries diverse batches while achieves best performance
t-SNE visualization

- We used the t-SNE technique to project the final embedding produced by the last layer of the network onto 2D space.
- Gave us insights on what each strategy is doing, especially by using the plot on the early iterations.
- Also shows the reason why some strategies are not performing well. For example, we observed Loss strategy sampled a lot of images that are close in the embedding space within each cluster. These findings also agree with the class variance metric.

Figure 8: embeddings of samples chosen from 1st iteration for all the strategies.
Experiments: Semi-supervised Learning

1. Noisy Student

Noisy Student doesn't outperform the common supervised training method.

<table>
<thead>
<tr>
<th>Training Method</th>
<th>Resnet34</th>
<th>Resnet50</th>
<th>Resnet101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised Training</td>
<td>0.731</td>
<td>0.739</td>
<td>0.763</td>
</tr>
<tr>
<td>Noisy Student</td>
<td>0.744</td>
<td>0.755</td>
<td>0.756</td>
</tr>
</tbody>
</table>

2. Temporal Ensembling

Table 4: Classification Performance for Pre-Trained MobileNet with Temporal Ensembling

<table>
<thead>
<tr>
<th>Model</th>
<th>Highest F1 Score</th>
<th>Epoch to Achieve Highest F1</th>
<th>Epoch to Achieve 0.65 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised MobileNet</td>
<td>0.717</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>Semi-Supervised MobileNet</td>
<td>0.716</td>
<td>72</td>
<td>37</td>
</tr>
</tbody>
</table>

Table 5: Classification Performance for Non-pretrained MobileNet with Temporal Ensembling

<table>
<thead>
<tr>
<th>Model</th>
<th>Highest F1 Score</th>
<th>Epoch to Achieve Highest F1</th>
<th>Epoch to Achieve 0.25 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised MobileNet</td>
<td>0.294</td>
<td>140</td>
<td>98</td>
</tr>
<tr>
<td>Semi-Supervised MobileNet</td>
<td>0.211</td>
<td>172</td>
<td>Never</td>
</tr>
</tbody>
</table>
Experiments: Semi-supervised Learning

3 Mean Teacher

Table 2: Classification Performance for Pre-Trained Mobilenet with Mean Teacher

<table>
<thead>
<tr>
<th>Model</th>
<th>Highest F1 Score</th>
<th>Epoch to Achieve Highest F1</th>
<th>Epoch to Achieve 0.65 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised MobileNet</td>
<td>0.716</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Semi-Supervised MobileNet</td>
<td>0.739</td>
<td>14</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3: Classification Performance for Non-Pretrained Mobilenet with Mean Teacher

<table>
<thead>
<tr>
<th>Model</th>
<th>Highest F1 Score</th>
<th>Epoch to Achieve Highest F1</th>
<th>Epoch to Achieve 0.25 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised MobileNet</td>
<td>0.302</td>
<td>106</td>
<td>69</td>
</tr>
<tr>
<td>Semi-Supervised MobileNet</td>
<td>0.321</td>
<td>115</td>
<td>52</td>
</tr>
</tbody>
</table>

- Compared to the normal supervised learning methods, Mean-teacher achieves higher F1 score on the pretrained mobilenet.
- Based on this positive feedback, we explore further if we can adopt this method of improving active learning queries.
Experiments: Semi-supervised Learning + Active Learning

Experiment Setup:
- Train 100 epochs of Mean Teacher (as in experiment of pure Mean Teacher)
- Query 200 images with margin sampling strategies every 14 epoch, so that we have 800 images queried in the end

Result:
- With 800 images queried in total, Mean Teacher + Margin outperformed pure semi-supervised learning but did not outperform margin sampling
An Easy-to-use AL Package Connected with GUI

Code for Your Active Learning Training Loop:

```python
model.fit()
query_time, queried_index = query('margin', model, 20)
update_json(json_path, queried_index, idx2base, base2idx, model, dataset, class_name_map)
index_list, target_list = read_from_oracle(path, idx2base, base2idx)
dataset.update_target(index_list, target_list)
model.update()
```
Future Works

1. Better Structure to combine active learning and semi-supervised learning
2. Try other encoders to improve the quality of embedding
3. Develop more comprehensive metric to measure the diversity of query data which can be useful for the selection of query strategy