GE Energy Efficient Machine Learning at the Edge

Ji In Choi, Madeleine Georges, Julia Shin, Olivia Wang, Tiffany Zhu
Mentor: Tapan Shah
Overview

1. Introduction
2. Base Quantization Methods
3. Stochastic Quantization Methods
4. Next Steps
Introduction

● How can we make AI carbon efficient?
● Low Precision ML
 ○ Can we learn a model from training data with 1-8 bit precision (as compared to 32-64 bits)?
Quantization

What is Quantization?

Convert data from q-bits to p-bits where $q > p$

\[[0, 3.5, 3.8, 4.8, 5.5, 5.6, 7.5, 8] \]

\[[0, 2, 2, 4, 4, 4, 6, 6] \]

Why Quantize?

Reduce storage by 20 times
Base Quantization Methods

- Simple Quantizer
- Simple Quantizer by Column
- Quantile Quantizer
- Quantile Quantizer by Column
Base Quantization Methods

Simple Quantizer
- Use minimum and maximum values in the entire dataset
- Create 2^p bins with uniform range (i.e. equal bin widths)
- E.g.

Simple Quantizer By Column
- Same as Simple Quantizer but for each column
Base Quantization Methods

Quantile Quantizer
- Use different quantiles over the entire dataset
- Create 2^p bins with *unequal* range (i.e. unequal bin widths)
- May help account for distribution of dataset
- E.g.

Quantile Quantizer by Column
- Same as Quantile Quantizer but for each column
Base Quantization Methods - Results

- Ran the 4 base quantizers on datasets from OpenML
 - QuantileQuantizerByCol may be the best quantizer
Base Quantization Methods - Results

- Using paired t-test
 \[H_0 : a_q - a_0 = 0 \]
 \[H_1 : a_q - a_0 \neq 0 \]

- Final results:
 1. By **column** quantizers work better
 2. **Quantile** quantizers work better than the Simple quantizers
 3. **QuantileQuantizerByColumn** is best of the base quantizers

<table>
<thead>
<tr>
<th>Bits</th>
<th>QuantileQuantizerByColumn vs Simple Quantizer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t-Statistic</td>
</tr>
<tr>
<td>1</td>
<td>5.9405</td>
</tr>
<tr>
<td>2</td>
<td>6.1571</td>
</tr>
<tr>
<td>3</td>
<td>5.5912</td>
</tr>
<tr>
<td>4</td>
<td>4.2122</td>
</tr>
<tr>
<td>5</td>
<td>4.2644</td>
</tr>
<tr>
<td>6</td>
<td>2.5539</td>
</tr>
<tr>
<td>7</td>
<td>3.1717</td>
</tr>
<tr>
<td>8</td>
<td>2.4289</td>
</tr>
</tbody>
</table>
The process of using a stochastic method is:

1. Given dataset X, create bins using a deterministic base quantizer
 - We use `QuantileQuantizerByColumn` in our experiments

2. Apply a stochastic process to X to put each data point into the bins generated from step 1.

Goal: lower the quantization error by introducing randomness

Two methods considered: Dithering and Stochastic Rounding
Stochastic Quantization Methods

Dithering
- Random noise is added to each input value
- Assuming data is scaled then for each data point X_i:

$$X_i \leftarrow X_i + \text{noise}$$

$\text{noise} \sim \text{Uniform}(-\text{bin}_\text{width}/2, \text{bin}_\text{width}/2)$

![Diagram showing dithering process](image)
Stochastic Quantization Methods

Stochastic Rounding

- The input value is rounded to one of bordering quantization levels with probability dependent on proximity.
- Given a point X_i and its neighboring upper bin U and lower bin L:

$$\text{round}(X_i) = \begin{cases} U & \text{with probability } \frac{(X_i-L)}{(U-L)} \\ L & \text{with probability } \frac{(U-X_i)}{(U-L)} \end{cases}$$
Stochastic Quantization Method - Results

Classification Data
- 55 classification datasets from OpenML
- Logistic Regression
Stochastic Quantization Method - Results

Classification Data

- Dithering is better for 1 bit
- Stochastic Rounding is better overall

- No clear pattern between improvement in accuracies and dataset attributes
Stochastic Quantization Method - Results

Regression Data
- 30 regression datasets from OpenML
- Ridge Regression
Stochastic Quantization Method - Results

Regression Data

- Both dithering and Stochastic Rounding work better on regression data

- No clear pattern between improvement in accuracies and dataset attributes
Conclusions

- **Base Quantizers:**
 - Using *quantiles* for each *column* is the best of the base methods

- **Stochastic Quantizers:**
 - Dithering and stochastic rounding can further improve quantization
 - Dithering and stochastic rounding work better on *regression* datasets than classification datasets
 - *Stochastic rounding* works better than dithering
Next Steps

Mini-batch Learning
Leveraging reinforcement learning to iteratively update quantizer

Precision Reallocation
Using linear programming to reallocate available bits to each feature

Deep Learning Models
Evaluate Quantization Methods on more complex, non-linear models
References

Thanks!

Questions?

jic2124
mg4128
js5569
yw3324
tz2196
@columbia.edu