

December 11, 2020 Poster Session

GE Energy Efficient Machine Learning at the Edge

Ji In Choi, Madeleine Georges, Julia Shin, Olivia Wang, Tiffany Zhu Mentor: Tapan Shah

Introduction

- How can we make AI carbon efficient?
- Low Precision ML
 - Can we learn a model from training data with 1-8 bit precision (as compared to 32-64 bits)?

Data compiled Oct. 9, 2019.

An "American life" has a larger carbon footprint than a "Human life" because the U.S. is widely regarded as one of the top carbon dioxide emitters in the world.

Source: College of Information and Computer Sciences at University of Massachusetts Amherst

Base Quantization Methods

- Simple Quantizer
- Simple Quantizer by Column
- Quantile Quantizer
- Quantile Quantizer by Column

Base Quantization Methods

Simple Quantizer

- Use *minimum* and *maximum* values in the entire dataset
- Create 2^p bins with *uniform* range (i.e. equal bin widths)

Simple Quantizer By Column

• Same as Simple Quantizer but for each column

Base Quantization Methods

Quantile Quantizer

- Use different quantiles over the entire dataset
- Create 2^p bins with *unequal* range (i.e. unequal bin widths)
- May help account for distribution of dataset

Quantile Quantizer by Column

• Same as Quantile Quantizer but for each column

Base Quantization Methods - Results

- Ran the 4 base quantizers on datasets from OpenML
 - QuantileQuantizerByCol may be the best quantizer

Base Quantization Methods - Results

• Using paired t-test

$$H_0: \ a_q - a_0 = 0 H_1: \ a_q - a_0 \neq 0$$

- Final results:
 - 1. By **column** quantizers work better
 - 2. **Quantile** quantizers work better than the Simple quantizers
 - 3. **QuantileQuantizerByColumn** is best of the base quantizers

Bits	QuantileQuantizerByColumn vs Simple Quantizer	
	t-Statistic	p-value
1	5.9405	2.1239e-07
2	6.1571	9.5375e-08
3	5.5912	7.6428e-07
4	4.2122	9.6499e-05
5	4.2644	8.1072e-05
6	2.5539	0.0135
7	3.1717	0.0024
8	2.4289	0.0184

Stochastic Quantization Methods

- The process of using a stochastic method is:
 - 1. Given dataset X, create bins using a deterministic base quantizer
 - We use QuantileQuantizerByColumn in our experiments

- Goal: lower the quantization error by introducing randomness
- Two methods considered: Dithering and Stochastic Rounding

Stochastic Quantization Methods

Dithering

- Random noise is added to each input value
- Assuming data is scaled then for each data point X_i:

 $X_i \leftarrow X_i + noise$ noise ~ Uniform(- bin_width/2, bin_width/2)

Stochastic Quantization Methods

Stochastic Rounding

- The input value is rounded to one of bordering quantization levels with probability dependent on proximity
- Given a point X_i and its neighboring upper bin U and lower bin L:

$$round(X_{i}) = \begin{cases} U & with probability \frac{(X_{i}-L)}{(U-L)} \\ L & with probability \frac{(U-X_{i})}{(U-L)} \end{cases}$$

Classification Data

- 55 classification datasets from OpenML
- Logistic Regression

Classification Data

- Dithering is better for 1 bit
- Stochastic Rounding is better overall

 No clear pattern between improvement in accuracies and dataset attributes

Regression Data

- 30 regression datasets from OpenML
- Ridge Regression

Regression Data

• *Both* dithering and Stochastic Rounding work better on *regression* data

0.4

0.2

0.0

-0.2

-0.6

-0.8

-1.0

NumberOfRows

IcesSR

-0.4

 No clear pattern between improvement in accuracies and dataset attributes

Conclusions

Base Quantizers:

• Using *quantiles* for each *column* is the best of the base methods

• Stochastic Quantizers:

- Dithering and stochastic rounding can further improve quantization
- Dithering and stochastic rounding work better on *regression* datasets than classification datasets
- Stochastic rounding works better than dithering

Next Steps

Leveraging reinforcement learning to iteratively update quantizer Precision Reallocation

Using linear programming to reallocate available bits to each feature

Deep Learning Models

Evaluate Quantization Methods on more complex, non-linear models

References

[1] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep learning in NLP. In ACL, 2019.

[2] Gupta, Suyog, Agrawal, Ankur, Gopalakrishnan, Kailash, and Narayanan, Pritish. Deep learning with limited numerical precision. arXiv preprint arXiv:1502.02551, 2015.

[3] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning. International Conference on Machine Learning. page 4035–4043, 2017.

[4] Hao, Karen. Training a single AI model can emit as much carbon as five cars in their lifetimes. MIT Technology Review, 2019.

[5] Onkar Dabeer, and Upamanyu Madhow. Channel estimation with low-precision analog-to-digital conversion. 2010 IEEE International Conference on Communications, Cape Town, 2010, pp. 1-6, doi: 10.1109/ICC.2010.5501995.

[6] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. arXiv:1907.10597v3
[7] Ye, S., Zhang, T., Zhang, K., Li, J., Xie, J., Liang, Y., Liu, S., Lin, X., and Wang, Y. A unified framework of dnn weight pruning and weight clustering/quantization using admm. arXiv preprint arXiv:1811.01907, 2018.

Thanks!

Questions?

jic2124 mg4128 js5569 yw3324 tz2196 @columbia.edu