
Energy Efficient AI on Edge
DSI Poster Presentation | December 11, 2020

Mentors:

Tapan Shah, GE Research

Eleni Drinea, Columbia University

Presentors:

Kumari Nishu (kn2492)

Pritam Biswas (pb2796)

Neelam Patodia (np2723)

Mohit Chander Gulla (mcg2208)

Prasham Dhaneshbhai Sheth (pds2136)

Agenda

1. Problem Statement

2. Post Training Quantization

3. Pruning

4. Quantization Aware Training

5. Conclusion & Future Work

6. Acknowledgement

7. References

Problem Statement

● Present day neural networks such as BERT, ELMo

tend to be deep, with millions of weights and

activations. These large models are compute and

memory intensive

● 300,000x increase in computation required for deep

learning research between 2013-2018*. Energy

consumption is not limited to model training

● The carbon emissions from training a deep learning

model is equivalent to 5 times the lifetime

emissions of an average car

● Hence, GE is focussing on low-latency and lighter

NN models without compromising on accuracy, to

be deployed on its EDGE devices

* Roy Schwartz, Allen Institute for Artificial Intelligence

Rising Carbon Emissions from AI needs our attention

● Pruning
- Removing less contributing weight from the network
- Inducing sparsity in weights and activations, having sparsity allows us to make

inference and model storage more efficient

Quantization Techniques

Dynamic Quantization

The activations and weights are
quantized on the fly. Only the

computations (multiplication and
convolutions) are efficient. Activations

are read & written in full precision

Quantization Aware Training

Leads to highest accuracy. During
training, activations and weights are

fake quantized. Thus adjustments are
made with a priori knowledge they will

be eventually quantized

Post-Training Static Quantization

Allows for both integer arithmetic
operations and memory access. This is
achieved by first obtaining distribution
of weights and using that to quantize it

Our Approach for Carbon Efficient AI

● Quantization
- Reducing the number of bits that represent a number
- Performing computations and storing tensors at lower bit width than the predominant FP32 format
- We have focused on quantizing only the weights using Post Training and Quantization Aware Training in 2-16 precision range

Model Category Model Complexity Dataset

ANN based Classification
 Simple: 2 dense layers

Complex: 5 dense layers

Churn Data

 Telescope Data

ANN based Regression
Simple: 2 dense layers

Complex: 5 dense layers

 California Housing Data

MV Data

CNN based Classification

 Vanilla CNN

ResNet-9

ResNet-50

VGG16

Fashion MNIST

 CIFAR-100

Dataset Name Rows Features Classes

Churn 10K 14 2

Telescope 19K 11 2

California Housing 20.6K 8 -

MV Data 40.7K 10 -

Fashion MNIST 70K - 10

CIFAR- 100 60K - 100

We experimented different quantization and pruning techniques over a variety of models across multiple datasets

Model Types Dataset Details

Data and Model Selection

1. Post Training Quantization
2. Pruning
3. Quantization Aware Training

Methods - Single-Point Quantization

Single-point Quantization approximates a weight value using a single low precision number.

1. Mid-Rise
a. Delta - controls granularity of data quantization, high delta implies high quantization and significant loss of information

b. Uniform division of range of Weight values into 2^p bins for p precision

c. w_quantized = Delta * (floor(w/Delta) + 0.5)

2. Regular Rounding
a. Quantization Set - collect a set of landmark values using uniform bin, histogram, prior normal on weight values

b. Map each weight value to the nearest landmark value from quantization set

3. Stochastic Rounding
a. Quantization Set - collect a set of landmark values using uniform bis, histogram, prior normal on weight values

b. Assign each weight value to either the closest smaller value or the closest larger value from quantization set probabilistically

Results - Single Point Quantization

CIFAR100

Accuracy of simple model = 0.58,

Accuracy of complex model = 0.89

ResNet with huge parameters suffer

more from quantization

FMNIST

Accuracy of simple model = 0.92,

Accuracy of complex model = 0.94

ResNet with huge parameters suffer

more from quantization

Methods - Multi-Point Quantization

Multi-point Quantization approximates a weight value using a linear combination of multiple values of low precision.

4. Multi-point - mixed precision method
a. Assign more bits to important layers, and fewer bits to unimportant layers to balance the accuracy and cost more efficiently

b. Achieves the same flexibility as mixed precision hardware but using only a single-precision level

c. The quantization set, Q, is constructed using a uniform grid on [-1, 1] with increment epsilon. K as scaling factor and B is center of Q

d. Each weight value w is approximated as follows. With a_i as a real number and wi~ from Qd for all i=1, ... , n

e. Apply above quantization method for weight matrix W of all layers one by one.

Results - Multi Point Quantization

CIFAR100
Avg Accuracy of

Stochastic Rounding,

Uniform in = 0.276

Avg Accuracy of

Multipoint = 0.347

Improvement = 25.7%

FMNIST
Avg Accuracy of

Stochastic Rounding,

Uniform Bin = 0.568

Avg Accuracy of

Multipoint = 0.647

Improvement = 14.1%

1. Post Training Quantization
2. Pruning
3. Quantization Aware Training

Pruning: Method of compression that involves removing less contributing weights from a trained model.

Pruning

- We are practically setting the neural network parameters’ values to zero to remove what we estimate are less

contributing (unnecessary connections) between the layers of a neural network.

- We use the magnitude of weights to determine the importance of the weights towards the model’s

performance.

Combining Post Training Pruning and Post Training Quantization

- We further experimented to combine the two compression

techniques: Pruning, Quantization

- We formulated them as 2 independent tasks and were applied in

the following order:

I. Post Training Quantization

II. Pruning

Pruning

Results - Pruning

CIFAR100
Accuracy of simple model (before pruning) = 0.58
Accuracy of complex model (before pruning) = 0.89

Performance of the simpler model with less number of
parameters is affected a lot as compared to the more
complex model

FMNIST
Accuracy of simple model (before pruning) = 0.92
Accuracy of complex model (before pruning) = 0.94

Performance of the simpler model with less number of
parameters is affected a lot as compared to the more
complex model

Results - Pruning + Quantization

CIFAR100
Accuracy of unpruned simple model (32 bit) = 0.58
Accuracy of unpruned complex model (32 bit) = 0.89

Accuracy of unpruned simple model (8 bit)* = 0.46
Accuracy of unpruned complex model (8 bit)* = 0.0097

The performance of pruned model after quantization
depends a lot on the pruning percentage as well as how
the model behaves before pruning

FMNIST
Accuracy of unpruned simple model (32 bit) = 0.92
Accuracy of unpruned complex model (32 bit) = 0.94

Accuracy of unpruned simple model (8 bit)* = 0.92
Accuracy of unpruned complex model (8 bit)* = 0.44

The performance of pruned model after quantization
depends a lot on the pruning percentage as well as how
the model behaves before pruning

Accuracy at 8 bits* = 0.045 Accuracy at 8 bits* = 0.25

Accuracy at 8 bits* = 0.86 Accuracy at 8 bits* = 0.89

* Quantized using Stochastic Rounding and Uniform Range as the unique value generator

1. Post Training Quantization
2. Pruning
3. Quantization Aware Training

Quantization Aware Training

Initialize

full precision

model

Quantize model

weights per layer

Forward propagate

and compute

gradients

Update gradient

using straight

through estimator

Backprop on full

precision model

Quantization Aware Training is a process of training the model assuming that it will be quantized later during inference

Key observations

- The biases of the model weights are not quantized for any layer during the training

- Straight through estimator is used to calculate the last term of the gradient during backprop

- The model obtained after QAT is at full precision and must be quantized before storage or inference

Results - Quantization Aware Training

Telescope Dataset
Accuracy of simple model (before QAT) = 0.86
Accuracy of complex model (before QAT) = 0.87

The complex model at full precision was performing slightly better than the simple model, which may be due
more complex features generated by complex model

● There is not much variability in accuracy across different quantization techniques in quantization aware

training as opposed to post-quantization schemes.

● Even stochastic rounding-prior normal and normal rounding-prior normal schemes perform well at all

quantization levels, unlike during post-training scheme

● The similar performance of all QAT strategies can be attributed to the closed loop feedback update system

● We notice a marginal improvement in the accuracy metrics, given that we quantized within 10 bits only

● Training times are considerably high especially for deep convolutional networks, which is a major drawback

Key Takeaways

Conclusion & Future Work

Conclusion

Single-Point Quantization
- Quantization Method: Stochastic Rounding performs better than Regular Rounding and Mid-Rise in accuracy

- Model Complexity: Complex models are impacted heavily due to quantization. CNN accuracy at 8 bits ~ full precision

accuracy and DNN accuracy at 6 bits ~ full precision accuracy

- Data Complexity: In classification problems with more number of classes, the accuracy deteriorates faster

Multi-Point Quantization
- It outperforms single point post-quantization methods for both simple and complex model architectures across both

CIFAR-100 and FMINST datasets with an improvement of 19.8% on accuracy

Pruning
- It is more effective in complex and deeper models as compared to simple model at full precision. Moreover, pruning a

quantized model depends on pruning % and how well the unpruned model is trained.

Quantization-Aware Training
- It marginally improves accuracy by 5% - more in case of simple than for complex models and does not depend much on

the quantization technique used. It comes at a cost of longer training time.

Future Work

Model Size

- To get a complete picture of each method’s effectiveness, we need to observe model size at different levels of

precision. This relates to our objective of reducing the carbon footprint of deep learning models.

Quantize Activations

- Along with quantizing weights, we can explore quantization of activations as well.

Improve Training Algorithm

- Most of the carbon emissions are caused due to the intensive computations required during the training.

(e.g.) BERT and GPT-3 require a lot a computation to learn the parameters. We can explore techniques to get

smart weight updates and reduce computations required during the training.

Hardware Simulations

- Experiment on specialized low-precision hardware to accurately evaluate different quantization techniques.

Acknowledgement

Acknowledgement

We would like to acknowledge and thank our project mentor and advisor for their efforts and expert guidance:

Tapan Shah - Lead Machine Learning Scientist, GE Research

Eleni Drinea - Lecturer, Data Science Institute, Columbia University

For more detailed information about the project, please refer to:

1. GitHub Repository: https://github.com/mohitgulla/Edge

2. Capstone Progress Reports: Phase 1 and Phase 2

https://github.com/mohitgulla/Edge
https://drive.google.com/file/d/1MY57iexinJXycdMxyyhc-l5mJpcLt653/view?usp=sharing
https://drive.google.com/file/d/1MY57iexinJXycdMxyyhc-l5mJpcLt653/view?usp=sharing

References

References

1. Xi. Liu, Mao Ye, Dengyong Zhou, & Qiang Liu. (2020). Post-training Quantization with Multiple Points: Mixed Precision without Mixed

Precision.

2. Shaokai Ye and Tianyun Zhang and Kaiqi Zhang and Jiayu Li and Jiaming Xie and Yun Liang and Sijia Liu and Xue Lin and Yanzhi Wang (2018). A

Unified Framework of DNN Weight Pruning and Weight Clustering/Quantization Using ADMM CoRR, abs/1811.01907.

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed Optimization and Statistical Learning via the Alternating Direction

Method of Multipliers Found. Trends Mach. Learn., 3(1), 1–122.

4. Raghuraman Krishnamoorthi (2018). Quantizing deep convolutional networks for efficient inference: A whitepaper CoRR, abs/1806.08342.

5. Benoit Jacob and Skirmantas Kligys and Bo Chen and Menglong Zhu and Matthew Tang and Andrew G. Howard and Hartwig Adam and Dmitry

Kalenichenko (2017). Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference CoRR, abs/1712.05877

6. Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin and Song Han (2018). HAQ: Hardware-Aware Automated Quantization CoRR, abs/1811.08886.

7. Song Han, Jeff Pool, John Tran, William Dally (2015). Learning Weights and Connections for Efficient Neural Networks CoRR, abs/1506.02626.

8. Suyog Gupta, Ankur Agrawal, Kailash G., Pritish Narayanan (2015). Deep Learning with Limited Numerical Precision CoRR, abs/1502.02551.

9. Aojun Zhou and Anbang Yao and Yiwen Guo and Lin Xu and Yurong Chen (2017). Incremental Network Quantization: Towards Lossless CNNs

with Low-Precision Weights CoRR, abs/1702.03044

10. https://pytorch.org/docs/stable/nn.html#utilities

11. https://www.tensorflow.org/model_optimization/guide/pruning

12. https://pytorch.org/blog/introduction-to-quantization-on-pytorch/

