Identifying Trading Opportunities using Unsupervised Learning

About Us

Hritik Jain

Romane Goldmuntz

Amaury Sudrie

Vy Tran

Kassie Papasotiriou

Maxime Tchibozo

- MS Data Science at Columbia University
- Capstone Project: Identifying Trading Opportunities
- Mentors
 - Naftali Cohen
 - Zhen Zeng
 - Srijan Sood

Motivation

Technical Analysis

- Identify investment opportunities using price alone
- Subjective (particularly chart patterns)
- "Price is all that matters!"

Motivation

Technical Analysis

- Identify investment opportunities using price alone
- Subjective (particularly chart patterns)
- "Price is all that matters!"

Question: Can we objectively identify meaningful *multiscale* patterns in financial time-series data using unsupervised machine learning?

Motivation

Technical Analysis

- Identify investment opportunities using price alone
- Subjective (particularly chart patterns)
- "Price is all that matters!"

Question: Can we objectively identify meaningful *multiscale* patterns in financial time-series data using unsupervised machine learning?

Multiscale patterns in time-series

- Murphy, John. Technical Analysis of the Financial Markets. Penguin, 1999
- Lo, Andrew W., Mamaysky, Harry and Wang, Jiang. Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation. *The Journal of Finance* (2000)
- Leigh, William, et al. Stock market trading rule discovery using technical charting heuristics. *Expert Systems with Applications* 23.2 (2002)
- Wang, Jar-Long, and Shu-Hui Chan. Stock market trading rule discovery using pattern recognition and technical analysis. *Expert Systems with Applications* 33.2 (2007)

Previous work: Lawrence Huang, AI Research Intern, Summer 2020

Figure 8: Average time series of clusters using four different clustering methods. <u>Source</u>: Searching for Patterns in Daily Stock Data: First Steps Towards Data-Driven Technical Analysis By Lawrence Huang, AI Research Intern, Summer 2020

- Key findings
 - time-series separable into clusters using unsupervised methods
 - o simple harmonic functions best characterize the data
 - \circ time, sector, profitability did not add predictive power

Key findings

- time-series separable into clusters using unsupervised methods
- simple harmonic functions best characterize the data
- time, sector, profitability did not add predictive power

Areas to build upon

Preprocessing techniques | Clustering algorithms | Cluster quality | Multiscale pattern evaluation

Outline

- Workflow
- Data generation
- Clustering pipelines
- Multiscale pattern evaluation
- Conclusion, next steps

Workflow of the project

Data Generation

Data Generation

<u>Synthetic data</u>

How can we simulate multiscale data?

Discrete Cosine Transform (DCT):

Decomposition of a signal into a sum of long scale, short scale & noise patterns.

We generate patterns by creating DCT coefficients for each scale.

Pipelines

Pipeline : Important Concepts

dynamic time warping

- DCT & Fourier Transform
 Smoother
- Dynamic Time Warping
 - Similarity measurement between 2 time series
 - Can capture similarity in patterns when time series are out of sync

Pipeline: Clustering & Optimizing Parameters

K-Means: Often used on time series to discover the existing patterns within each signal.

Optimizing k:

- Silhouette Score accounts for the intra and inter-cluster distance.
- The higher the score, the better; the less clusters the better.
- The Elbow Method enables us to find a balance between the two.

Pipeline: DCT & Skipped

DCT & Skipped : Adding 2 long scale dimensions to each time series

Pipeline: DCT & Skipped

Main takeaway: The clusters are capturing harmonic trends and the times series are evenly spread among the clusters

Pipeline: DCT & Autoencoders

Autoencoders: Neural Networks to extract features of the long scale time series

Pipeline: DCT & Autoencoders

Main takeaway: Results tend to be independent of the autoencoder architecture: CNN, LSTM or single linear layer

Multiscale Evaluation

Multiscale Evaluation

Multiscale Evaluation: Long-term Scale

Overall increasing trend in 60 days

Multiscale Evaluation: Short-term Scale

They should NOT belong in the same cluster

Multiscale Evaluation: Perceptually Important Point (PIP)

- A method for dimensionality reduction of time series
- Extract the most important points from a human observer perspective
- Use PIP to evaluate multiscale patterns

Multiscale Evaluation: Permutation Entropy

- A method for time series complexity measurement
- Downsampling 3 or more points using PIP
- Classify motifs using a sliding window

Multiscale Evaluation: Permutation Entropy

Multiscale Evaluation: Permutation Entropy

Multiscale Evaluation: Cluster: Skipped-Values

Multiscale Evaluation: Permutation entropy: Skipped Values

- First graph in the 3-PIP histogram of all ts
- Second graph is the 5-PIP point sliding window of length 3

Different in the shortterm scale

Conditional Probability Analyses

- insights on predictive power of clusters
- how short term (or future) trends relate to long term (or past) trends

Steps:

- → Split all time series chunks at fixed points to obtain two different sets
- → Cluster independently
- Probability of cluster assignment in 2nd set conditioned on cluster assigned in 1st set
 P(cluster_2nd_set | cluster_1st_set = c)

Conditional Probability Analyses

Conditional Probability Analyses: k-means

Past time-series clusters

future timeseries cluster

2 3 4 5 6 future timeseries cluster

Conditional Probability Analyses: Autoencoders

ò

future timeseries cluster

Past time-series clusters

ò

future timeseries cluster

Normalized shannon entropy

$$\eta(X) = rac{H}{H_{max}} = -\sum_{i=1}^n rac{p(x_i)\log_b(p(x_i))}{\log_b(n)}$$

Mean normalized shannon entropy across clusters obtained using different pipelines on 80 days time series with split as *X*/*Y*

Pipeline	40/40	50/30	60/20
k-means	0.978	0.975	0.986
Autoencoders	0.962	0.949	0.978

Conclusion & Next Steps

Key Findings

- Our research opens new directions for multiscale analysis and evaluation in stock prices
- Ensembling different methods leads to more compact clusters
- Results varied across methods and clusters

Next Steps

- Fine-tuning existing pipelines to make sure that all clusters capture multiscale properties
- Introducing Profitability:
 - Which clusters are capturing profitable patterns?
 - Can we use clustering to predict future stock behavior?

Thank you!

