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Technical Analysis

e |dentify investment opportunities using price

alone

e Subjective (particularly chart patterns

e “Price is all that matters!”
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Technical Analysis

|dentify investment opportunities using price
alone

Subjective (particularly chart patterns

“Price is all that matters!”
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Question: Can we objectively identify meaningful multiscale patterns in financial time-series data
using unsupervised machine learning?
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using unsupervised machine learning?



Multiscale patterns in time-series

RNS

CUP AND HANDLE
(CONTINUATION - BULLISH ONLY)

e Stock price:
.~ o Long timescale for context
-~ o Short timescale for current behavior

e Multiple harmonics for sine waves
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Previous work: Lawrence Huang, Al Research Intern, Summer 2020

K-Means DBSCAN Hierarchical Autoencoder

signal clusters (4), weighted by commonness signal clusters (4), weighted by commonness Signal clusters (4), weighted by commonness 20 Signal clusters (4), weighted by commonness

1.0 10

0.5 05

0.0 0.0

std units
std units
SLA unis
std units

-05 -0.5

-1.0

-15 -15| -15 15

20550 40 30 20 10 ¢« 2% 40 30 20 -10 o %% 40 -30 20 10 =20 55 40 30 20 10 °
days days days days

Figure 8: Average time series of clusters using four different clustering methods.
Source: Searching for Patterns in Daily Stock Data: First Steps Towards Data-Driven Technical
Analysis By Lawrence Huang, Al Research Intern, Summer 2020

e Key findings
o time-series separable into clusters using unsupervised methods
o simple harmonic functions best characterize the data
o time, sector, profitability did not add predictive power



Previous work: Lawrence Huang, Al Research Intern, Summer 2020

Key findings

o time-series separable into clusters using unsupervised methods
o simple harmonic functions best characterize the data
o time, sector, profitability did not add predictive power

Areas to build upon

Preprocessing techniques | Clustering algorithms | Cluster quality | Multiscale pattern evaluation




Outline

Workflow

Data generation

Clustering pipelines
Multiscale pattern evaluation

Conclusion, next steps




Workflow of the project

Data Collection

Feature Extraction & Clustering Pipeline

Real S&P 500 data

Synthetic Data

Generate artificial
multiscale data

Scaling & Random
Sampling

Multiscale Feature
Extraction

Autoencoders,
Discrete Cosine &
Fourier Transform,
Padded Sampling,

Perceptually Important
Points,
Skip-sampling, ...

Cluster Check and
@ Parameter Optimization
j‘ Elbow Method KMeans,
DTW & Euclidean metrics
Silhouette Score

Combine Best methods

DCT + autoencoders,
DCT + skip & padded sampling

v

v

Multiscale Evaluation: Evaluate all pipelines on real & synthetic data

PIP Permutation Entropy

Which patterns are clustered together?

Conditional Distribution

Which patterns are predictive of future behavior?




Data Generation




Data Generation

Synthetic Discrete Cosine Transform coefficien

Reconstructed synthetic signal using inverse DCT
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How can we simulate multiscale data?

-

patterns.

Frequency Space (days~?)

\

Discrete Cosine Transform (DCT):

Decomposition of a signal into a sum
of long scale, short scale & noise

We generate patterns by creating DCT
coefficients for each scale.
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Pipelines




Pipeline : Important Concepts

Original signal (Min-Max Scaling) Discrete Cosine Tranlsfom\ coefficients (set coefs above 13 to ze:cs) Reconstructed signal using inverse DCT
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o Similarity measurement
between 2 time series

o Can capture similarity in
patterns when time
series are out of sync

dynamic time warping




Pipeline: Clustering & Optimizing Parameters

Silhouette score
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Feature 1

Silhouette score with KMeans

10 15 2
number of cluster

-

K-Means: Often used on time series to
discover the existing patterns within each
signal.

Optimizing k:

~

Silhouette Score accounts for the intra
and inter-cluster distance.

The higher the score, the better; the less
clusters the better.

The Elbow Method enables us to find a
balance between the two.
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Pipeline: DCT & Skipped

Scaled timeseries DCT smoothed timeseries
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DCT & Skipped : Adding 2 long scale dimensions to each time series




Pipeline: DCT & Skipped

0.54 0.55 0.56 0.57 ... 0.43
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Main takeaway:
The clusters are capturing harmonic trends and the times series
are evenly spread among the clusters




Pipeline: DCT & Autoencoders
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Autoencoders: Neural Networks to extract features of the long scale time series




Pipeline: DCT & Autoencoders

Reconstructed signal using inverse DCT

Cluster 6 centroid (n=66) Cluster 7 centroid (n=87)
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Main takeaway:
Results tend to be independent of the autoencoder architecture:

CNN, LSTM or single linear layer




Multiscale Evaluation




Multiscale Evaluation

Cluster 0 centroid (n=561) Cluster 1 centroid (n=702) Cluster 2 centroid (n=809)

10
08
06
04
02
00

10
08
06
04
02

00

This is a complicated How do we know if the
clusters capture
raph! ‘ !
P multiscale patterns?




Multiscale Evaluation: Long-term Scale

Example of timeseries Example of timeseries
10 A
08 1
0.6 1
0.4 1
0.2 1
0.0 1
0 10 20 30 40 50 60 6 10 20 30 40 50 60
days days

Overall increasing trend in 60 days




Multiscale Evaluation: Short-term Scale

Example of timeseries Example of timeseries

10 A1

0.8 1

0.6 1

0.4 1

0.2 1
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0 10 20 30 40 50 BIO 0 10 20 30 40 50 60
days days
Up then Down Down then Up

They should NOT belong in the same cluster



Multiscale Evaluation: Perceptually Important Point (PIP)

Adj Close Price
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A method for dimensionality
reduction of time series

Extract the most important
points from a human observer
perspective

Use PIP to evaluate
multiscale patterns




Multiscale Evaluation: Permutation Entropy

x =[6,9,11,12,8,13,5],n=3, 1= 1
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A method for time
series complexity
measurement

Downsampling 3 or
more points using
PIP

Classify motifs using
a sliding window
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Multiscale Evaluation: Permutation Entropy

relative frequency
p.
i
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in sequence
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Multiscale Evaluation: Permutation Entropy

x=[6,9,11,12,8,13,5, n=3, T= 1
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Third sliding window:
decreasing motif
(2,3,1)

(1,2,3) (1,3,2) (211,3) (23,1) (3.1,2)
i™" permutation pattern




Multiscale Evaluation: Cluster: Skipped-Values

Cluster Average 0
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Multiscale Evaluation: Permutation entropy: Skipped Values
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Conditional Probability Analyses

e insights on predictive power of clusters

e how short term (or future) trends relate to long term (or past) trends

Steps:

- Split all time series chunks at fixed points to obtain two different sets

- Cluster independently

-> Probability of cluster assignment in 2nd set conditioned on cluster assigned in 1st set

P( cluster 2nd set | cluster 1lst set = c )



Conditional Probability Analyses

Long
scale/Past

Short
scale/Future

Number of timeseries in longer timescale cluster 3: 1440
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Conditional Probability Analyses: k-means

Populations of future timeseries clusters
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Conditional Probability Analyses: Autoencoders

Past time-series clusters
(4 shown here)
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Conditional Probability Analyses: Evaluation

Normalized shannon entropy

_ H - opl@i)logy (p(a:))
n(X) B Hmaw B ; logb(n)

n = number of clusters

Mean normalized shannon entropy across clusters obtained using different
pipelines on 80 days time series with split as X/Y

Pipeline 40/40 50/30 60/20

k-means 0.978 0.975 0.986

Autoencoders 0.962 0.949 0.978




Conclusion & Next Steps




Conclusions & Next steps

s S N O D
Key Findings Next Steps

e Our research opens new
directions for multiscale
analysis and evaluation in
stock prices

e Fine-tuning existing pipelines to
make sure that all clusters
capture multiscale properties

Introducing Profitability:
e Ensembling different ¢ Introducing Frofitability

methods leads to more o Which clusters are capturing
compact clusters profitable patterns?

o Can we use clustering to

e Results varied across :
predict future stock behavior?

methods and clusters




Thank you!




