Reinforcement Learning for Taxi Driver Re-positioning Problem in NYC

Tian Wang, Yingyu Cao, Bo Jumrustanasan, Tianyi Wang, Xue Xia
December 10, 2020

Data Science Institute © Columbia University
Motivation
Goal
Utilizing Data Science to optimize drivers’ decision making

Problem: Reposition Strategy

Project Overview:
Background
Demand for improving traffic efficiency is increasing

- **Platform**: Supply-demand balance
 - Rise of for-hire vehicle (FHV) companies such as Uber and Lyft
- **City**: Traffic congestion
 - From 6.1 mph in 2010 to 4.3 mph in 2018
- **Driver**: Income
 - 41% time seeking passengers
Background
Drivers’ decision making is affecting their earning

Figure 1: Driver Income Distribution

- Working shifts
- Starting time
- Re-positioning
- …
Data
• Dataset: New York City Taxi Trip Data (2010-2013)
• Features used:
 • hack license (Driver ID)
 • pickup datetime
 • dropoff datetime
 • trip time in secs
 • trip distance
 • trip fare
 • pickup longitude & pickup latitude
 • dropoff longitude & dropoff latitude
Data Preprocessing

- Sampling: Yellow Taxi trip records in June 2013
- Removal of abnormal data: trips with
 - traveling time < 1 min or > 3 h
 - average speed > 50 mph
 - distance > 30 miles
 - trip fare > 150
 - pick-up or drop-off location not in NYC
Data Preprocessing

- Each position coordinate is assigned to a taxi zone.
 - Speed up the process using bounding box and R-tree algorithm.
- Driver trajectory is recovered based on the shortest path weighted on distance between taxi zones.
Methodology
Key Assumptions

1. Coordinates are discretized into taxi zones.
2. Time is discretized into time intervals Δt.
3. There is only one driver following the optimized policy the model derives, i.e. one agent.
4. Drivers can cruise to other taxi zones without taking any orders in current taxi zone (drivers can refuse rides).
1. Agent: One single driver
2. State space: \(\text{state} = (\text{location}, \text{time}) \)
3. Action space: \(a \in \{0, 1, \ldots, n_{\text{taxi zones}} \} \)
Figure 2: Environment
Training Algorithm: SARSA

1: Initialize $Q(s, a)$ arbitrarily.
2: for Each observed episode do
3: for Each step in the episode do
4: Observe S, A, R, S', A'
5: $\delta = R + \gamma * Q(S', A') - Q(S, A)$
6: $Q(S, A) = Q(S, A) + \alpha * \delta$
7: end for
8: end for
Experiment
Figure 3: Day Shift Model Convergence
Earning and utilization rate from the derived policies will be compared against the historical data below.

<table>
<thead>
<tr>
<th></th>
<th>Day Shift</th>
<th>Night Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earning per Shift</td>
<td>$321</td>
<td>$332</td>
</tr>
<tr>
<td>Utilization Rate</td>
<td>54.0%</td>
<td>53.8%</td>
</tr>
</tbody>
</table>

Table 1: Empirical Performance
• Percentage of zones that travel within the same zone is much higher during rush hours, especially in Manhattan and Brooklyn areas.
• For zones that travel to adjacent zone, we can detect flow of traffic in the same direction and some popular destinations.
Conclusion & Future Work
Conclusion

- Simulated environment
 - Distance, traveling time, cruising time, etc.
- Optimized policy
 - Identify heat spots for different regions
Future Work

- Simulated Environment
- Learning Algorithm
- Data Sampling
Thanks!
For more information, you can visit our Github
Appendix
Figure 4: Night Shift Model Convergence