
Repackaged
Android App

Detection
Columbia University

Data Science Capstone Project
Team 1

Presented by
Jianfeng Zhuang, Huazhang Liu, Chengyou Ju, Shaofeng Wu, Weitao Chen

Faculty Mentor: Professor Gail Kaiser
PhD Mentor: Shirish Singh

Overview
Harms of Android apps repackaging

● Deprive benefits

● Spread malwares

● Increase workload

How the Reverse Engineering Happened

Fig Taken from Lookout Mobile Threat Report 2011, accessed Dec, 2020.

Dataset: RePack

● Collected From AndroZoo

● 2776 original apps

● 15,297 repackaged apps

Pipeline to Extract Java Code

Fig. Java Code Extraction Pipeline

 Exploratory Analysis and Observations
● 14827 pairs of repackaged and original apps extracted successfully

○ 7178 pairs have same sensors
○ 6789 pairs do not have any sensors
○ 804 repackaged apps have additional sensors than original apps
○ 61 original apps have additional sensors than repackaged apps

● 29 used sensors
● 32 used hardware and software features
● 114 used permissions
● Most used:

○ Sensor: Accelerometer
○ Feature: Touchscreen multitouch
○ Permission: Internet

 Exploratory Analysis and Observations

Fig. Top Used Features and Permissions Fig. Top Used Sensors

 Exploratory Analysis and Observations

Fig. Additional Used Sensors in Repackaged than Original

Works with Imbalanced Dataset
Original dataset contains 15297 pairs of repackaged-to-original apps

Solve the imbalance problem by:

● Down Sampling

● Random Oversampling

● Duplicating original apps

● SMOTE

Major Evaluation Metrics:

● Balanced accuracy scores

Modeling on Sensor, Feature, Permission Data
The models we used:

● Baseline Model (predict everything as malware)
● Logistic Regression
● Support Vector Machine (SVM)
● K-Nearest Neighbor (KNN)
● Random Forest
● XGBoost
● Multilayer Perceptron (MLP)

Two methods on oversampling:

● Oversample minor class
● SMOTE (Synthetic Minority Oversampling TEchnique)

Modeling on Sensor, Feature, Permission Data
Model results in balanced accuracy:

● Oversampling Model - Top 3 Models:
○ Random Forest: 0.70
○ Logistic Regression: 0.69
○ SVM: 0.69

● SMOTE Model - Top 3 Models:
○ Logistic Regression: 0.68
○ Random Forest: 0.68
○ XGBoosting: 0.67

Fig. ROC Curve on Oversampling Model

Fig. ROC Curve on SMOTE Model

Modeling on Sensor, Feature, Permission Data

Fig. Feature Importance on Random Forest

Flow Data
I. Control Flow Graph (CFG)

● Static analysis and compiler application

● Tool used: Androguard

● Pipeline

Fig. Control Flow Graph Pipeline

II. Data Flow Graph (DFG)

● Flow Droid: a generic, platform-independent data flow tracker and platform-specific extensions

● Pipeline

Flow Data

Fig. Data Flow Graph Pipeline

Flow Data
DFG - Taint Analysis

● Find untrustworthy sources and mark them as tainted

● Follow the “tags” to trace the flow of tainted objects

Fig. Taint Analysis

Modeling on Flow Data
● Model Selection:

○ Logistic Regression
○ Support Vector Machine (SVM)
○ K-Nearest Neighbors (KNN)
○ Random Forest
○ Gradient Boosting
○ XGBoost
○ Multi-layer Perceptron (MLP)

● Evaluation Metrics:
○ Balanced Accuracy (Main)
○ ROC-AUC Score
○ F1-Score

● Mainly focus on 804 pairs
○ Repackaged apps have extra sensors
○ Analyze in CFG, DFG and Both

● Additional CFG Analysis on 7997 pairs:
○ Adding 7178 pairs with same sensors

● Strategies on Imbalance:
○ Random Oversampling
○ Duplicating originals by pairs

Modeling on Flow Data
Model results in balanced accuracy:

● 804 pairs on CFG - Top 3 Models:
○ MLP: 0.96
○ Gradient Boosting: 0.94
○ Random Forest: 0.89

● 804 pairs on DFG - Top 3 Models:
○ SVM: 0.77
○ Logistic Regression: 0.74
○ XGBoost Classifier: 0.71

Fig. ROC Curve on DFG of 804 pairs

Fig. ROC Curve on CFG of 804 pairs

Modeling on Flow Data
Model results in balanced accuracy:

● 804 pairs on both CFG and DFG - Top 3 Models:
○ Logistic Regression: 0.96
○ SVM: 0.94
○ Gradient Boosting: 0.94

● 7997 pairs on CFG - Top 3 Models:
○ Logistic Regression: 0.64
○ Random Forest: 0.62
○ XGBoost: 0.62

Fig. ROC Curve on CFG of 7997 pairs

Fig. ROC Curve on all flow data of 804 pairs

Modeling on Flow Data
Feature importance in best Gradient Boosting model of 804 pairs:

● Top 3 Feature in CFG
○ Mobclix Browser Activity to Sensor Manager
○ Full Screen Activity to Sensor Manager
○ Unit Player to Sensor Manager

● Top 3 Feature in DFG
○ Call Graph Construction Time
○ Number of Sinks
○ Maximum of Memory Consumption

● Top 3 Feature in both CFG and DFG
○ Full Screen Activity to Sensor
○ Call Graph Construction Time
○ Full Screen Activity to Sensor Manager

Conclusion
Repackaged Apps thread Android ecosystem

Sensor based detection on repackaged apps helps

● Java code information based on sensor classifies some original-repackaged pairs
● Flow paths (CFG and DFG) through sensor also are able to classify pairs

Potential future works:

● Java-language-based detection
● Other methods to extract sensor information

Thank You For Listening

Links
Light Talk on Youtube: https://youtu.be/ECMqzvwGnes

Androzoo: https://androzoo.uni.lu

Javalang: https://github.com/c2nes/javalang

AndroGuard: https://androguard.readthedocs.io/en/latest/

FlowDroid: https://github.com/secure-software-engineering/FlowDroid

https://youtu.be/ECMqzvwGnes
https://androzoo.uni.lu
https://github.com/c2nes/javalang
https://androguard.readthedocs.io/en/latest/
https://github.com/secure-software-engineering/FlowDroid

Appendix - Model Results

Fig. Model Results on Sensor, Feature, and Permission Dataset using Oversampling

Fig. Model Results on Sensor, Feature, and Permission Dataset using SMOTE

Appendix - Model Results

Fig. Model Results on CFG of 804 pairs

Fig. Model Results on DFG of 804 pairs

Appendix - Model Results

Fig. Model Results on both CFG and DFG of 804 pairs

Fig. Model Results on CFG of 7997 pairs

