Capstone Project Final Presentation Automated Model Reduction for Atmospheric Chemical Mechanisms (AMORE Project)

Faculty Mentor: Dr. Faye McNeil, Dr. Siddhartha Sen

Students: Lingrui Luo, Zihe Wang, Zijing Wang, Di Ye, Qiaoge Zhu

Contents

- Introduction
- Dataset Overview
- Procedure Walkthrough
 Data Preprocessing
 Directed Graph
- Product
- Discussion & Future Work
- References

Atmospheric Chemistry Modeling: Bridging Scales

AMORE (<u>A</u>tmospheric Chemistry <u>MO</u>del <u>RE</u>duction)

An automated tool for flexibly generating accurate reduced chemical mechanisms for use in atmospheric chemistry and air quality models.

Two-step model reduction: graph theorybased strongly-connected component analysis followed by simplified quasisteady state analysis

Introduction Objective

- Develop and implement a graph-based algorithm to automatically generate reduced gas-phase chemical mechanisms.
- Improve accuracy and efficiency of large-scaled atmospheric chemistry models.

Why it is meaningful?

- Enable the improved, sustained and consistent development of chemical mechanisms for air quality forecasting, research, and policy analysis.
- Understand the air quality, especially how air pollutants move in the atmosphere.
- Limitation of the computational complexity
- The chemical stiffness in the detailed chemical mechanisms

Dataset Overview

Isoprene Mechanisms	Number of species	Number of reactions
MCM v.3.3.1	602	1926
CB05	18	9
CB6r2	38	22
GEOS-Chem v11.02c	106	335
GFDL-AM3	23	12
GISS ModelE	15	3
Paulot 2009 (high and low NOx, reduced)	45	28
Wennberg 2018 (full)	385	810

The Fu Foundation School of Engineering and Applied Science

Dataset Format: Kinetic Preprocessor (KPP) format

- A file of chemical reactions in the full mechanism.
- A file of species involved in the full mechanism.
- A file contains editable input parameters and initial values of included species, temperature, etc.

Procedure Data Preprocessing

An Example of Chemical Reaction

• A list of tuple with reaction and reaction rate formula

('ISOP + OH = ISOP1OHc', 2.7E - 11 × EXP(390 / TEMP) × 0.63 × 0.5)

Procedure Data Preprocessing

ISOP + OH = ISOP1OHc: 2.7E - $11 \times EXP(390 / TEMP) \times 0.63 \times 0.5$

The weight of the reaction for the product

$$R_A = \sum_{i=1,I} v_{A,i} w_i$$

 $v_{A,i}$: the stoichiometric of species A

 w_i : the production rate

 $\begin{aligned} r_{ISOP1OHc} &= v_{ISOP1OHc,i} \times w_i \\ &= v_{ISOP1OHc,i} \times k \times c[ISOP] \times c[OH] \\ &= 1 \times 2.7E - 11 \times EXP(390/TEMP) \times 0.63 \times 0.5 \times c[ISOP] \times c[OH] \end{aligned}$

- k : the reaction rate for this particular reaction (equation)
- c[ISOP] and c[OH] are the initial concentration values of ISOP and OH respectively

Procedure Data Preprocessing

How to measure the influence of one species on another?

$$r_{AB} = \frac{\sum |v_{A,i}w_i\delta_{Bi}|}{\sum |v_{A,i}w_i|}$$

Normalized contribution of species B to the production rate of species A

$$\delta_{Bi} = \begin{cases} 1, \text{ if the ith elementary reaction involves species E} \\ 0, \text{ otherwise} \end{cases}$$

Procedure

Graph Construction

Directed Relation Graph (DRG)

- Node: a species in the detailed mechanism
- Edge from A to B: A is dependent on B (the removal of B would directly induce significant error to the production rate of A)

$ISOP + OH = ISOP1OHc: 2.7E - 11 \times EXP(390 / TEMP) \times 0.63 \times 0.5$

Procedure

Graph Construction

Directed Relation Graph (DRG)

- Perform a depth first search starting from the 'starting sets' and obtain a skeleton graph
- We used organic species as starting sets while treating others as background species.

Procedure Graph Reduction

Method:

- Define a threshold value ϵ
- Only keep the paths that all the edges has a weight greater than ϵ such that $r_{AB} \ge \epsilon$

Results

The number of Species for various threshold values

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Product

Python Package Chem_graph

We created a python package called chem_graph accessible on Github. Our product contains following functionalities:

- Read and parse the raw file, and construct the graph accordingly
- Given threshold value and starting set, compute the reduced graph and dependent set
- Visualize the graph

Product

Algorithm 1 Original DFS Approach	Algorithm 2 Modified DFS A	
Given r_{AB} dictionary, list of ϵE . starting set S	Given r_{AB} dictionary, list of ϵI	
Create graph q based on r_{AB}	Sort r_{AB} dictionary based on the	
for each ϵ in E do	Sort E from high to low;	
create visited set v	create visited set v	
create stack s , push S into s	create set c to keep track of gray	
while s not empty do pop one element e from s	for each ϵ in E do include new edges with value	
for each neighbor n of e do if the edge weight smaller than ϵ , continue	for each new edge do if the destination node of	
if n visited, continue	DFS from the destination	
push n to v and s	\mathbf{end}	
end	output current v for current	
end	\mathbf{end}	
output v for ϵ		
end		

Algorithm 2 Modified DFS Approach Given r_{AB} dictionary, list of ϵ E. starting set Sort r_{AB} dictionary based on the edge weight from high to low; ort E from high to low; reate visited set vreate visited set vreate set c to keep track of graph or each ϵ in E do include new edges with value smaller than last ϵ_0 but larger than current ϵ for each new edge do if the destination node of the new edge is not visited, continue DFS from the destination node, push the newly visited to vend output current v for current ϵ nd

Running time: O(n(V+E))

Running time: O(nlog(n) + V+E)

Product

Sample Usage

from chem_graph import *		
demo_graph = ChemGraph()		
priority_species = ['ISOP1CO400Hc']		
<pre>demo_graph.construct(path='isoprene_full_v5',</pre>	starting_set=priority_species,	<pre>must_contain=['ISOP'])</pre>

File pathStarting setMust contain

Product Sample Usage

Skeleton Graph

Whole Graph

Future Direction

- Evaluation on the reduce mechanism
- Evaluation on the generated graph

References

Lu, Tianfeng, and Chung K. Law.A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute 30.1 (2005) : 1333-1341.
 Sun, Wenting, et al. "A path flux analysis method for the reduction of detailed chemical kinetic mechanisms." Combustion and Flame 157.7 (2010): 1298-1307.
 V. Damian, et al. "The Kinetic PreProcessor KPP – A Software Environment for Solving Chemical Kinetics", Computers and Chemical Engineering, Vol. 26, No. 11, p. 1567-1579, 2002
 Dawlet E. et al. "Isoaprene photoexidation: new insights into the production of acids and

[4] Paulot, F, et al. "Isoprene photooxidation: new insights into the production of acids and organic nitrates". Atmos. Chem. Phys. 9 (2009)

[5] Graphviz API Reference. https://graphviz.readthedocs.io/en/stable/api.html

Thank You!

