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Topic structure mapping

LLDA was also compared to a k-nearest neighbors (kNN) approach in 
increasingly difficult subsets of the test data in terms of chemical 
similarity (right to left) and substructure subset (blue to yellow). 
LLDA’s relative performance increases in more difficult tests sets in 
both cases

Comparison to alternatives

Labeled latent Dirichlet allocation for MS2 spectra

Topic modeling for MS2 substructure prediction
Topic C1C[NH]C(C)C1CCC Composition
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Peak Words Neutral Loss Words
C12H8 loss_C2N
C15H13N loss_C5N
C10H7 loss_C7H5N
C13H9N loss_C8H4N
C10H10N loss_C4H6
C11H8N loss_C2HN
C14H12N loss_C8H5N
C11H9N loss_C7H2N
C12H11N2 loss_C6H5
C16H12N loss_C4H4N

Methods Spectra with  ≥1 hit in 
top 3

Spectra with  ≥ 2 hit in 
top 3

LLDA 125/185 82/185
MESSAR 79/185 40/185
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Labeled Latent Dirichlet Allocation (LLDA) [2] is a supervised 
topic model that restricts topics to predefined user-specified tags

The labels are linked to specific chemical substructures during 
preprocessing before training. Spectrum features are thus fit to the 
substructures themselves

Metabolites are the small-molecule organic products of cellular 
metabolism. They are crucial in biological systems but many remain 
unidentified

Liquid chromatography – mass spectrometry (LC-MS) is often the 
method of choice for analyzing and discovering new metabolites, 
however chemical structure prediction from MS2 spectra is difficult

An example small molecule 
metabolite (ergonovine)

Topic modeling decomposes MS2 spectra into probabilistic topics 
using spectrum features (e.g. peaks and neutral losses)

See MS2LDA [1] for original implementation of topic modeling for 
MS2 substructure predictions

Post-training: for a spectrum (𝑑), the similarity score for a given 
substructure (𝑘) is calculated using the following formula:

𝑠𝑖𝑚 𝑘, 𝑑 =
𝑣!"𝑣#
𝑣! 𝑣#

Where 𝑣! is the word distribution for substructure 𝑘 and 𝑣! is the 
count in document 𝑑 for every word in the training corpus

Spectrum features are also mapped to constrained molecular 
formulas in order to make resulting model topics chemically 
interpretable

Comparison of our LLDA 
substructure prediction 
model to MESSAR [3], using 
the same train/test spectra 
and substructures labels. An 
example test spectrum is 
shown with its top 
(correctly) labeled 
substructure and 
interpretable topic

Comparison to alternatives (continued)

Relative LLDA - kNN (AUC) Performance
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