Evaluation of Effectiveness of Mitigation Strategies for COVID-19 Pandemic Sciencity Columbia University of Public Health Shanghong Xie^a, Wenbo Wang^b, Qinxia Wang^a, Yuanjia Wang^{a,*}, Donglin Zeng^{b,**}

^a Department of Biostatistics, Mailman School of Public Health, Columbia University; ^b Department of Biostatistics, University of North Carolina at Chapel Hill *: yw2016@cumc.columbia.edu; **: dzeng@email.unc.edu

Introduction

- COVID-19 pandemic is a global health challenge
- States-level responses: non-pharmaceutical interventions (NPIs) to mitigate COVID-19
 - Physical distance closures (lockdown): stay-at-home orders; closing of schools, businesses, restaurants, bars; ban visitors to long term care facility
 - Mask mandates
 - Reopening business (e.g., restaurants, bars, retails)

Estimate the Effects of NPIs

- **Process-based infectious disease models** to simulate counterfactual outcomes under interventions (Ferguson et al. 2020)
- **Regression models** to study association between NPIs and outcomes **Quasi-experiment designs** for longitudinal (panel) data with staggered adoption of intervention (e.g., lockdown) across states. Often used to study health policies when randomized trials are not feasible

Causal inference methods

- **Difference in difference (DID)** regression, or interrupted time series analysis (e.g., Wing et al. 2018)
- **Synthetic controls** (Abadie et al. 2010): create weights to match pre-treatment period of control units

Our Goals

Use **quasi-experiment framework** to account for confounding and estimate **average** treatment effect (ATE) and heterogeneity of treatment effect (HTE)

Proposed Method

- **Outcome measures** for COVID-19 transmission
 - Observed cases are subject to high variation/noises
 - Underlying mechanism of disease transmission can be summarized by effective reproduction number R_t
 - More meaningful time scale is to match by disease stage: shift calendar time to time since first reported case

Estimate outcome R_t

N(t): number of new infections on date t; a(t): effective transmission rate, modelled as non**negative, piece-wise linear functions**; S(k): discrete survival function of time to out of transmission.

Effective reproduction number (R_t) : $R_t = \frac{N(t)}{\sum_{k=1}^{C} N(t-k)w(k)}$, w(k): probability mass function of the serial interval distribution

Calendar Days (t)

Causal estimand: ATE

 $Y_i^{(1)}(t + \Delta; t)$: potential outcome (change of Rt between t and $(t + \Delta)$) when **intervention of interest is applied at** t and no other interventions in $(t, t + \Delta)$. $Y_i^{(0)}(t + \Delta; t)$: potential outcome when **no intervention is applied at time** t,

and no other interventions in $(t, t + \Delta)$.

Intervention effect Δ days after $t: \gamma(\Delta, t) = E[Y_i^{(1)}(t + \Delta; t) - Y_i^{(0)}(t + \Delta; t)]$ **ATE** is defined as $\gamma(\Delta) \equiv \int \gamma(\Delta, t) dF_T(t)$, where $F_T(\cdot)$ is the distribution of the intervention times T_i

Assumptions

Covariates for Propensity Scores

- X_i: state-level demographics (e.g., age, race, ethnicity distribution) and social vulnerability index (SVI) variables (available from the CDC).
- hospitalizations

Estimation Methods

 $\gamma(\Delta, t) = \mathsf{E}\left[\frac{I(T_i = t)}{P(T_i = t | T_i \ge t, H_i(t), X_i)} \{Y_i(t + \Delta; t)\}\right] - E\left[\frac{I(T_i = t)}{P(T_i > t | T_i \ge t, H_i(t), X_i)} \{Y_i(t + \Delta; t)\}\right]$ and ATE is $\gamma(\Delta) \equiv \int \gamma(\Delta, t) dF_T(t)$.

ATE is estimated by inverse-propensity score weighted DID estimator, i.e., empirical version of $\gamma(\Delta)$.

Propensity score model: logistic regression of covariates $(H_i(t), X_i)$ **HTE by regression**: moderators Z_i, postulate model for the conditional average treatment effects (CATE) $E\left[Y_i^{(1)}(t + \Delta; t) - Y_i^{(0)}(t + \Delta; t)|Z_i\right] = \theta^T Z_i$ The estimator for θ can be obtained by solving estimating equation.

Results

Significant covariates in propensity score model

- Lockdown: R_t, new cases, new deaths, Latino population size, limited English ability, institutionalized population size
- Mask mandate: R_t , new cases
- Reopen business: R_t , mobile home
- Reopen bars: new cases

 $H_i(t)$: previous week's R_t , new cases, new deaths, testing positivity rate,

We acknowledge the U.S. National Institute of Health grant support (GM124104A1-S1).