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Only about 2 percent of human DNA is made up of
protein-coding genes; the other 98 percent, as has been
verified by a multitude of experiments, is noncoding.

Scientists once thought
this noncoding DNA was
“junk,” with no functional
purpose, but
groundbreaking research
In the early 2010s
suggested that this might
not be the case. Some segments of noncoding DNA,
as it turns out, prove important in regulating gene
activity. Knowing this, researchers have been working
to understand the location and role of these genetic
components.

One method that has gained traction recently is the
application of deep and interpretable neural networks
to the task of classifying the different portions of the
genome. The most successful models that have been
developed thus far require various features
concerning a given sequence of DNA, such as open
reading frame information, codon bias, and more. The
Wu Lab set out to investigate whether the coding and
noncoding sequences of the genome could be
computationally classified using only naive sequence
information, in order to better model and thus glean
information about biological reality.

ABSTRACT

The goal of this project is to learn whether neural
network models can be used to accurately identify the
coding and noncoding sections of a genome, given only
the sequence of nucleotide bases that appear in the
segment in question. For this purpose, various model

architectures,
preprocessing
techniques, and
evaluation methods
were experimented

Black Box

with. Importantly, because this goal stems from a
desire to model/understand biological realities as
closely as possible, it was important that these
networks be somehow interpretable. In particular, as
opposed to black boxes, we sought deep neural
networks that could indicate what in a given
sequence had instructed their decision. Though the
project is still in progress, results thus far have been
favorable and future steps well established.

: INTRODUCTION A

% Server equipped with GPUs and thus able to process
large amounts of data and run deep neural networks
“ Human Genomic data (NCBI RefSeq track) for 22
chromosomes from UCSC Genome Browser
— Exon and Intron sequences for each
chromosome
— Exon, Intron, and UTR sequences for each
chromosome
— Gene annotation data for each chromosome
“* Spyder (open source, cross platform IDE for Python)

METHODS

DATA PROCESSING:

1. Download aforementioned sets of sequences and
gene annotation information for each chromosome
from the UCSC Genome Browser

2. To construct your training and testing data set, write a
preprocessing script in Python to perform the
following tasks on each sequence for each
chromosome

o Utilize either the set of exon and intron sequences
for each chromosome or the set of exon, intron,
and UTR sequences based on whether the user
specifies binary/categorical classification

o Cut sequence to user-specified length (i.e. 100,
300, etc.) so it can be fed through neural network
successfully

o Remove all duplicate sequences based on gene
annotation table previously retrieved

o Construct balanced and imbalance dataset

EXPERIMENTING WITH NEURAL NETWORKS:

1. Using Tensorflow and Keras, construct neural
networks of varying architectures, with a particular
focus on Recurrent Neural Networks and
Convolutional Neural Networks

2. Train each constructed neural network on a randomly
selected portion of the data processed beforehand.
Test on the remaining portion of the data.

3. Note the accuracy and tune network hyperparameters
until no more improvement seems possible.
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a RESULTS

Ultimately, after constructing, experimenting with, and
tuning many different architectures, the one that was
found to work the best was a Two Dimensional Deep
Convolutional Neural Network. Below is a pictorial
depiction of the final pipeline used.
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Having chosen and tuned this architecture, we then
ran tests on its accuracy in four tasks: binary
classification (imbalanced), binary classification
(balanced), categorical classification (imbalanced),
and categorical classification (balanced). The best
scores retrieved are noted in the below bar graph.

Training and Test Accuracies by Model
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Binary Classification  Binary Classification Categorical Categorical
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Evidently, the imbalance binary classification task was
performed most accurately, and the balanced
categorical classification task was performed least
accurately. Further, there is a steep drop off between

each task’s training and test accuracy.

Below is an example interpretable result extracted
from the binary classification model. Letters facing
upwards suggested to the model that the sequence
was coding; those facing downwards suggested
noncoding. The size of the letters indicates their
relative importance in the final decision made.
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g CONCLUSIONS A

The project has not yet reached its final conclusion, but
results so far indicate that though it is possible to
distinguish between coding and noncoding regions of the
gene using neural networks trained only on sequence
information, it is rather difficult to do so with very high
accuracy and without overfitting to a given training set.
As of right now, the accuracies we are getting on the
balanced datasets seem close to but not better than the
state of the art systems that use multiple features in
making their predictions. We hope to continue
experimenting with some different and more advanced
architectures to see if these are able to remedy the
aforementioned problem. We also plan to soon begin
analyzing the interpretable results retrieved from the
highest performing models to see if, from this, we might
learn of previously unknown motifs.

We are also now considering a new avenue of
investigation. In particular, we are now interested in
learning whether the tools that currently exist on the
market for the sake of predicting coding/non-coding
sections of the gene can be improved by the results of
our models being sent in as an additional feature vector
to them. If this is in fact the case, then this implies that
though our models may not be able to extract enough
information/learn enough patterns from sequence data
alone to make accurate predictions independently, they
still manage to encode important information regarding
the coding potential of a segment of the genome. We are
excited to see where this new pursuit leads us.
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