Automatic techniques for identification of cryptographic code

Data Science Institute
&2 COLUMBIA UNIVERSITY

Eleni Drinea

Detecting cryptography in projects

There is a variety of cryptography libraries that implement secure cryptography
algorithms such as OpenSSL. However, some open-source projects implements their
owhn cryptography code that can potentially be insecure. Detecting those custom
implementations is of paramount importance for using those projects.

Cryptography code uses ciphers to encrypt/decrypt inputs, using keys and
transformations on the input (bitwise operations, permutations etc...)

Public Key Cryptography Cipher key Plaintext

keys are different but
mathematically linked

Ko (128 bits) ——> AddRoundKey |

-
e -
” ~~
-
- -
- -
- -
- -
" e
- -

Bob's 4« ®» Bob's

g?b, " Public Key EI)(()STBJEOtK\:V Private Key gfb, - SOREe .

op trying zta op trying — .
to make % soRTuwl/7J0 @ to make .~ ShiftiRows |
fetch happen. ﬁ Q7gzwyJBuy ﬂ fetch happen. . 2
- l ™ MixColumns 2

sEncrypt & Decrypt K (128 bits) ———>/ AddRoundKey |

plaintext ciphertext plaintext :

Figure 2. A round of transformation for
encryption for AES (Advanced Encryption
Standards)

Figure 1. Cryptography for encrypting/decrypting a file

Collecting the dataset
The problem was narrowed down to file-level binary classification for C/C++.

V1: files from crypto competition submissions, crypto libraries (positive examples) and
files from algorithmic competitions and randomly selected github repositories (negative
examples). V1 has a few important shortcomings, including:

e easily separable classes,
e lack of diversity and coverage

V2: contains OS code, hashing, signal processing, networks, bitwise based operations,
ML and heavily math-based non-crypto examples - with an emphasis on keeping
ambiguous files in the mix instead of discarding them.

void Sha512_data(SHA512_DATA xsha, const void xbuffer, DWORD 1len)

{
DWORD templen;

/* Add to the total length of the input stream x/

sha—>totalLen += (QWORD) len;

unsigngd h i ¢ .
/* Copy the blocks into the input buffer and process them x/

while(len > 0)

{

/* Get clear text, using little-endian byte order.

if(!(sha—>inputLen) && len >= 128)
{
/* Short cut: no point copying the data twice */
for (i 4 < roundss ixe ProcessBlock(sha, (const BYTE x)buffer);
{ buffer = (const void %) (((const BYTE x)buffer) + 128);
- ys 4*i]l; ‘ len —= 128;

Figure 3. Sample data

templen = len;
if(templen > (128 — sha—>inputlLen))
{

that should give a slight speedup. *x/

w3 = t3; templen = 128 - sha—>inputLen;
} Y
memcpy (sha->input + sha->inputLen, buffer, templen);
if((sha—>inputLen += templen) >= 128)
2 eys [4xi]);

5 *i + 1]); {
ProcessBlock(sha, sha—>input);

O 0O 00D

- =44

K <K <

nw unuon

PN
¥

sha—>inputLen = 0;

t; «t0); Y

: : g::;)i buffer = (const void *)(((const BYTE *)buffer) + templen);
+ 12, t3); len —= templen;

NNNN
-~ ———~ XX xIR *
o ooaQ oo oo N
0w n
—~

¥
}

Crypto example Non-crypto example (non-trivial)

Models

Hadrien Cornier, Redouane Dziri, Arthur Herbout, Corentin Llorca, Arnaud Stiegler
George Argyros, Michael McDougall

Data Science Capstone
Project
with Amazon

Two different approaches to code processing - how to capture signal from code?:
e Model A - using hand-crafted features and metadata features with various counts of

code elements (loops, bitwise operations, type declarations), imports...

into a fixed length vector

e Model B - Processing the code as a text input by using an embedding to turn the code

Benchmark: pattern matching on code as text (using generic terms like “crypt” as well

as calls to crypto libraries and mentions of registered crypto algorithms and protocols) -

using Wind-River’s crypto-detector?
v

input: (None, 1000)
output: | (None, 1000, 50)

l

input: (None, 1000, 50)
output: (None, 50000)

l

input: (None, 50000)
output: | (None, 50000)

l

input: (None, 50000)
output: (None, 1)

embedding: Embedding

flatten: Flatten

dropout: Dropout

dense: Dense

Figure 4. Architecture of the
embedding-based model

Results
Classification results from our models:

The benchmark already performs well on
our dataset, and Model B only improves
slightly on it.

Limitations:

e Dataset: the model performance is bound

by the dataset quality
e Hard cases: hashing functions that are
very similar to cryptography code

Potential improvements:

e Collect files from more varied sources
e Build syntactic trees to capture the

semantics of the code before embedding

Reference

Wind-river: cryptography detection tool:

200 -

150 1

100 H

Crypto label
- 0
F 1

m o .

int

-

long
I
mal

@ -

loop

Inc
bitwise ops

hexadec

Figure 5. Counts of different code
features across the two classes in V1

Model Precision | Recall F1 F2

Model A 0.75 0.89 | 0.81 | 0.86

Model B 0.90 0.87 | 0.88 | 0.88

Benchmark 0.79 0.87 0.83 | 0.86

rumber of pwd

Figure 6. Feature importance of
hand-crafted features using boosted trees

https://github.com/Wind-River/crypto-detector

