

Rich and Cheap Bond Recommendation

Capstone Final presentation

May 9th, 2019 Columbia Vanguard Team

Columbia Team Vanguard

Jeff Khasin

Addison Li

Background Research / Domain Knowledge EDA JPM literature review EDA Bond Prediction All Curve Fitting models Backtesting

Steve McClain

Developed / evaluated recommendation models Integrated user feedback into UI UI development Implementation of interactive charts Integration of recommendation models

Naoto Minakawa

t EDA

EDA Bond Prediction Forward Shock Model Backtesting Model evaluation

Yilin Sun

Hangyu Zhou

Bond Prediction Linear Mixed Effect Model Model evaluation Integration of Prediction Models into UI

- Review problem statement
- Introduce background knowledge
- Share modeling methodology
- Discuss key business insights
- Examine future engineering / next steps

What are we solving for?

Portfolio Managers' dilemma:

What is the next best bond to buy/short, when my first choice is **unavailable**?

Crash course: Bonds Market Structure

Data set: Important Bond Concepts and Features

- Years to Maturity
- Coupon
- Yield and Spread
- Risk premium
- Duration
- Relative value

Crash course: Financial Crisis and Deteriorating Liquidity

Corporate Debt Outstanding (\$bn) 10,000 9.000 8.000 7,000 6,000 5,000 4,000 3.000 2.000 1.000 0 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Source: SIFMA

Source: Federal Reserve Bank of New York

- When a bond is unavailable, we can provide a list of alternatives that match the portfolio manager's need?
- We can proactively identify which bonds are rich or cheap on the trading day?

Our solution enables traders without coding experience to get bonds recommendations easily

High-level System Architecture

High-level Algorithms Detail

Domain Knowledge + Unsupervised Learning

Categorical Filtering	Dimensionality Reduction	Euclidean Distance Metric	
Filter for bonds that match on key characteristics	Mitigate "curse of dimensionality"	Recommendations are the closest bonds in the vector	
	Reduce impact of highly-correlated features	space	

Bootstrapping a feedback-based recommendation model

Categorical Group 1

(Insurance, United States, AA)

Bond	Distance to Bond A			
А	0			
В	1.5			
С	2			
D	12			

Categorical Group 2

(Natural Gas, China, AAA)

Bond	Distance to Bond A			
E	?			
F	?			

Bootstrapping a feedback-based recommendation model

Categorical Group 1 (Insurance, United States, AA)

Bond	Distance to Bond A			
А	0			
В	1.5			
С	2			
D	12			

Feedback Training Set

Categorical Group 2

(Natural Gas, China, AAA)

Bond	Distance to Bond A			
E	?			
F	?			

Bootstrapping a feedback-based recommendation model

Categorical Group 1 (Insurance, United States, AA)

BondDistance to Bond AA0B1.5C2......D12

Feedback Training Set

Categorical Group 2 (Natural Gas, China, AAA)

Bond	Distance to Bond A		
Е	?		
F	?		

All bonds in Group 1 are closer to Bond A than *any* bond in Group 2

Bayesian Personalized Recommendation

- "Embed" each bond as a vector in latent space
- Measure bond similarity by computing dot products (higher is better)

Bond	Latent Vector		
А	[0.20, 0.05, -0.25,]		
В	[0.60, 0.15, -1.52,]		
F	[-1.56, -2.71, 0.34,]		

		Similarity Matrix						
		А	В	С	D	Е	F	
	А		1.81				-2.1	
	В							
	С							
	D							
i•j	Ε							
	F							

Learning problem: Find the embedding that maximizes the difference in the dot products between the target bond and the "better"/ "worse" recommendations given in the training set, subject to L2 regularization

Simi(i,j) =

$$\sum_{(u,i,j)\in B_s} \ln \sigma(\hat{x}_{uij}) - \lambda_{\Theta} ||\Theta||^2$$

Model Validation

Other Financial

Latent Dimension	Area Under Curve (AUC)
8	0.9544
16	0.9645
32	0.9600

Qualitative Validation

The latent space recovered the concept of market sector

Quantitative Validation

The model can correctly order pairs of bonds from a hold-out set of rankings

All Bonds Liquidity G-spread

Issuer Curve Or / and Rating Curve

Our three filtering criteria:

All Bonds Liquidity G-spread

Issuer Curve Or / and Rating Curve

x 30 DAYS

Bond Prediction - Curve Models

$$Y = \beta_1 \log x + \beta_0 + \epsilon$$

• Logarithmic Model:

$$Y = \beta_2 (1 - e^{-0.2x}) + \beta_1 (1 - e^{-0.05x}) + \beta_0 + \epsilon$$

• Forward Shock Model:

$$Y = \beta_2 (1 - e^{-0.2x}) + \beta_1 (1 - e^{-0.05x}) + \beta_0 + \gamma_2 (1 - e^{-0.2x}) + \gamma_1 (1 - e^{-0.05x}) + \gamma_0 + \epsilon$$

• Linear Mixed Effect Model:

Key Points

Metric duration-adjusted cumulative excess return (not price return or simple cumulative excess return)
Assumption a one-week bond holding period (one-week equals to five trading days)
Data daily excess return and one-week average duration

$$Return = rac{r_1 + r_2 + r_3 + r_4 + r_5}{avg(duration)}, \ where \ r_i \ is \ daily \ excess \ return$$

Better Performance on Cheap Bonds; Natural Gas sector performed the best

Prediction influenced by seasonality

It appears to be a seasonal influence that affect our prediction accuracy.

Forward Shock Model gives a better prediction.

Logarithmic Model Forward Shock Model Linear Mixed Effect Model Outperform Underperform Outperform Underperform Outperform Underperform Predicted Predicted Predicted 62.01% 37.99% 66.30% 33.70% 62.05% 37.95% Cheap Cheap Cheap Predicted Predicted Predicted 58.88% 41.39% 58.61% 41.12% 41.53% 58.47% Rich Rich Rich **Actual cheap Actual rich** bonds bonds Average Number of Cheap Bonds per Day 18 30 33 Average Number of Rich Bonds per Day

Recommendation:

• Investigate other matrix factorization approaches that scale better to large datasets (e.g. Hierarchical Poisson Factorization)

Prediction:

- Incorporate liquidity data
- Back testing: back testing full year, or multi- year data

UI:

- Allow a new bond that is not in our system yet to acquire a similarity score
- Allow user feedback to interact with the recommendation engine dynamically

Thank you!

Questions ? Fire away!