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Sections in PDF Documents
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Problem Statement: Background

Client: Regulations.gov

Final RulingPre-rule
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Problem Statement: Business Impact

12-20 
Weeks

30
People

Prior to Automation

2
People

2
Weeks

Post Automation

Source: KPMG 5



Problem Statement: Our Solution 

Filename SectionID Summary
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Module 1
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PDF Ingestion: PDF to ?

PDFs to Text
Issue: White spaces only between the paragraphs

Two other attempts

PDFs to XML
Issue: A section title appears within 

a paragraph

PDFs to HTMLs

Information extracted from HTMLs led us to build 
extra features used in our models. 
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PDF Ingestion: Can you tell which one is an original 

PDF?
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HTML-based features (“raw”) in blue. Engineered features from the raw in red.

Data Preparation: Feature Engineering
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Data Preparation: Feature Engineering
Category Feature Name Description

Binary Leading_Char_Upper A line start with a uppercase character

Leading_Numeral A line start with Arabic or Roman numeral

Ends_in_Period A line ends with a period

Leading_Number_Period A line starts with any numeral combination followed by  period

Leading_Char_Period A line start with any uppercase or lowercase character followed by period

Leading_Roman_Numeral A line start with any Roman numeral

Roman_Period A line start with Roman numeral followed by period

Numerical Num_Word Number of words in the text line

Num_of_Spec_Char Number of special characters in the text line

LS A line space between previous and current lines. 

Punctuation_Count Number of punctuations in the text line

Title_Word_Count Number of title word counts in the text line

Upper_Case_Word_Count Number of uppercase word counts in the text line

Ratio_of_Title_Word_To_Total Ratio of the number of title words to all words in the line

Categorical Document File Name

Textural Last_Word Last word of the text line

First_Three_Words First three words of the text line
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Data Preparation: HTML to Data frame

PDF Features Data frame
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Data Preparation: Getting Modelling-ready 

● Treating Missing Data

● OneHotEncoding Categorical Data 

● Scaling Continuous Features

● Transforming Text Data: Last Word and First 3 Words
○ One Hot Encoded Representation: CountVectorizer and TfidfVectorizer
○ n_grams: (e.g. “not happy”, “deeply sad”)
○ stop_words (e.g. “a”, “in”)
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Scikit-learn pipeline prevents leakage by 
chaining transformations with 

cross-validation

Modelling: Test-Train splits and Pipelines 

7744 lines coming from 19 documents

70% Train

30% Test
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Modelling: Class Imbalance and Evaluation Metrics

2.08% of the lines are section titles 

• False Negative: Section titles 
incorrectly identified as a 
in-text line

• False Positive: in-text line 
incorrectly identified as a 
section header 

• In our scenario, we cared 
slightly more about False 
Negatives.
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Classification Algorithms:

1. Baseline Model: Logistic Regression 

2. Random Forest Classifier

3. XGBoost Classifier

Modelling: Algorithms 

Parameter Tuning and Cross-validation

● Grid-search over parameters 

● Using a 5-fold cross-validation: Stratified Shuffle Split 

● Embedded in a scikit-learn Pipeline

Outlier Detection Algorithms: 

1. Isolation Forest: Picks outliers by 

randomly selecting features

2. Elliptic Envelope: Assume Gaussian 

Covariance to isolate outliers
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Modelling: Best Results on an Independent Test Set 

True Negatives: 2,273 False Positives: 10 

False Negatives: 4 True Positives: 36

Results Table

Random Forest

Max Depth: 50 
Number of Trees: 100

Oversampling 
Minority Class

Empirical Rule 
Any line that begins 

with “RE:” is labelled 
as a section title  

Threshold Precision Recall F1
Score

ROC 
AUC

Accuracy

0.31 0.78 0.90 0.84 0.95 0.99

Confusion Matrix
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Modelling: Important Features 
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Module 2
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Background and Methodology
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• Module 2 Objective: take the intermediate output 
generated by Module 1 and produce good quality text 
summarization

• We consider 5 different text summarization 
techniques that range from simple frequency based 
to semantic based analysis

• We consider two metrics (Levenshtein distance, 
Jaccard distance) to compare the output generated 
by these 5 methods

• Experimental evaluation and comparison of 
summarization output

• Lessons learned from summarization exploration

Data Prep
& Input Data

Text Summarization 
Methods

Summarized
Text Output

Comparison 
Framework

Levenshtein
Jaccard

Summarization
w/Comparison Score

Original Document

Module 1

Module 1
Output

Module 2
ETL

Module 2
Input



How Text Summarization Works?

Abstractive Summarization: This method produces 
summarization that is more human like where important 
concepts are produced. 

This method selects words based on semantic 
understanding and tries to summarize based on 
important concepts. Most methods interpret and examine 
the text using advanced natural language techniques in 
order to generate a new shorter text that conveys the 
most critical information.

Input document → understand context → semantics → 
create own summary.

Extractive Summarization: Sentences are ranked based 
on important part of the sentences. Summarization method 
chooses top ranked sentences. 

Different algorithm and techniques are used to define 
weights for the sentences and further rank them based on 
importance and similarity among each other. 

Input document → sentences similarity → weight sentences → 
select sentences with higher rank.

Extractive Summarization returns top-N sentences as summarized output whereas Abstractive Summarization produces a key 
set of concepts as summarization based on semantic analysis. The latter is often hard and more complex but more 
human-like. 
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Broadly two categories of Text Summarization: Extractive and Abstractive



Module 1 Output schema

1. document: name of the document

2. page : page number where each text belongs to

3. text: the text from each line is store in this column

4. Class: the classification of each line text line

Module 2 Input Schema

1. document : document name

2. secIDin: the section id of a particular text 

3. text: the text for each section 

Data Preparation for Summarization Step
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Data Preparation (Module 2 ETL)
• Original document is processed by Module 1 to generate a set of meta tags
• Module 2 ETL utilizes Module 1 Output to generate input data with appropriate features for Text Summarization Methods

 Module 2 Data ETL



Summarization Models
Luhn Model Lex Rank Model Tex Rank Model LSA Model NLTK 

Core Idea Each sentence is 
assigned a score based 
on frequency of 
occurrence and distance 
among significant words; 
next is to extract top-N 
sentences with top 
scores.

Sentences are assigned a 
score based on TF-IDF and 
creating a graph with edges 
between similar sentences; 
PageRank based approach is 
used to compute rank of each 
sentence; top-N ranked 
sentences are extracted.

Similar to LexRank; While 
LexRank uses cosine 
similarity of TF-IDF 
vectors, TextRank uses a 
measure based on the 
number of words two 
sentences have in 
common.

LSA projects data into a 
lower dimensional space 
using SVD; singular vectors 
can capture and represent 
word combination patterns; 
magnitude of singular value 
indicates importance of the 
pattern in a document.

Simple text 
based approach 
summarization 
using basic NLP 
techniques such 
as word 
tokenization. 

Category Extractive Extractive Extractive Close to abtractive Extractive

Frequency 
based 
ranking

Graph based 
ranking

ML 
Unsupervised

Semantic
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Comparing Summarization Quality with Similarity Metrics … cont 

• Our hypothesis: If summarization output produced by these methods are ”very similar” to 
each other, this consensus is an indicator that summarization quality may be good. 
Conversely, if the output are “highly dissimilar”, the summarization quality is at least is non 
conclusive.  

• We want to experimentally validate if “maximal consensus” is a good policy of picking 
good summarization. 

• Automated hypothesis testing: We choose two metrics to measure similarity between two 
strings

○ Levenshtein distance: measures similarity at character level
○ Jaccard distance: measures dissimilarity at word level

How do we know whether summarization is good quality?
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Jaccard distance: dissimilarity between two strings

      represents the total number of attributes where A and B both 
have a value of 1.

       represents the total number of attributes where the attribute of 
A is 0 and the attribute of B is 1.

      represents the total number of attributes where the attribute of 
A is 1 and the attribute of B is 0.

      represents the total number of attributes where A and B both 
have a value of 0.

Levenshtein distance: similarity between two strings 

Mathematically, the Levenshtein distance between two 
strings       (of length    and    respectively) is given by 

Comparing Summarization Quality with Similarity Metrics 

where          is the indicator function equal to 0 when     
and equal to 1 otherwise, and                is the distance 
between the first    characters of     and the first 
characters of 
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Experiments 
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Experiments and Results  
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Key Results

• L-score is more optimistic compared to J-score

• All methods have lowest similarity J-score with LSA

• Luhn and Text Rank seem to have highest similarity J-score 

• LexRank and Text Rank summarization differs significantly 
although both use PageRanking/Graph based model!

• Maximal Consensus (highest number of methods with similar 
summarization) provided good summarization and validates our 
hypothesis

• Associativity of similarity does not hold with summarization! 



Summarization Output

Best Model:
● Maximal consensus on summarization seems to be a good choice 
● Luhn and Text Rank have highest similarity score in our analysis
● Jaccard score is  a better candidate for text summarization comparison 
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Lesson Learned & Future Work
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Lessons

● Check the integrity of your dataset until the last moment
● Make sure to manually inspect where your model is making mistakes 
● ML is not a panacea to all ills, so be flexible about other ways of supporting it
● NLTK based summarization are counterintuitive as was shown in metrics table
● Jaccard score is a better metric for comparison 
● Maximal consensus based summarization gives better quality results

Future Work

● Evaluate abstractive summarization 
● Explore CNN vector representations 
● Evaluate models using other metrics such as Rouge, Blue, and Meteor
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Thanks!
Questions?



Liliana Cruz-Lopez

● Module 1: Converted PDFs to HTMLs, extracted 
raw features from HTMLs and contributed to 
engineered features

● Module 2: completed end-to-end text 
summarization

Pranjal Bajaj

● Model concept and development 

● Model implementation: Choosing Metrics and 
Implementing best practices using scikit-learn 

* In alphabetical order

Main contribution from team members
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Minsu Yeom

● Preprocessing: Feature engineering (Line 
space(LS), Ratio of title word to total), Converted 
PDFs to XMLs

● Model implementation: XGBoost

Gayani Perera

● PDF Ingestion, Feature engineering, model 
implementation : Random Forest

● Extractive text summarization



Appendix
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Scikit-learn Pipeline
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Precision - Recall vs Threshold for Best Model: 
Random Forest
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HTML-based features (“raw”)
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Table of Best Results


