
Industry Mentors

Junghoon Woo, Director Data Scientist,

Data & Analytics (The Lighthouse), KPMG LLP, US

Viral Chawda, Principal, Innovation & Enterprise Solutions (I&ES), Lighthouse and Global lead,

 AI & Analytics for Government & Infrastructure, KPMG LLP, US

Algorithmic Comment Processing

Members*

Gayani Perera, Liliana Cruz-Lopez, Minsu Yeom, Pranjal Bajaj

Data Science Institute Mentor

Sining Chen, Lecturer, Columbia University

* In alphabetical order

Automate the Identification
and Summarisation of
Sections in PDF Documents

OUR GOAL

2

1. Problem Statement
2. Module 1: PDF Ingestion
3. Module 1: Data Preparation
4. Module 1: Modelling
5. Module 2: Section Summarization

Roadmap

3

Problem Statement: Background

Client: Regulations.gov

Final RulingPre-rule

4

Problem Statement: Business Impact

12-20
Weeks

30
People

Prior to Automation

2
People

2
Weeks

Post Automation

Source: KPMG 5

Problem Statement: Our Solution

Filename SectionID Summary

6

Module 1

7

PDF Ingestion: PDF to ?

PDFs to Text
Issue: White spaces only between the paragraphs

Two other attempts

PDFs to XML
Issue: A section title appears within

a paragraph

PDFs to HTMLs

Information extracted from HTMLs led us to build
extra features used in our models.

8

PDF Ingestion: Can you tell which one is an original

PDF?

9

HTML-based features (“raw”) in blue. Engineered features from the raw in red.

Data Preparation: Feature Engineering

10

11

Data Preparation: Feature Engineering
Category Feature Name Description

Binary Leading_Char_Upper A line start with a uppercase character

Leading_Numeral A line start with Arabic or Roman numeral

Ends_in_Period A line ends with a period

Leading_Number_Period A line starts with any numeral combination followed by period

Leading_Char_Period A line start with any uppercase or lowercase character followed by period

Leading_Roman_Numeral A line start with any Roman numeral

Roman_Period A line start with Roman numeral followed by period

Numerical Num_Word Number of words in the text line

Num_of_Spec_Char Number of special characters in the text line

LS A line space between previous and current lines.

Punctuation_Count Number of punctuations in the text line

Title_Word_Count Number of title word counts in the text line

Upper_Case_Word_Count Number of uppercase word counts in the text line

Ratio_of_Title_Word_To_Total Ratio of the number of title words to all words in the line

Categorical Document File Name

Textural Last_Word Last word of the text line

First_Three_Words First three words of the text line

11

12

Data Preparation: HTML to Data frame

PDF Features Data frame

12

Data Preparation: Getting Modelling-ready

● Treating Missing Data

● OneHotEncoding Categorical Data

● Scaling Continuous Features

● Transforming Text Data: Last Word and First 3 Words
○ One Hot Encoded Representation: CountVectorizer and TfidfVectorizer
○ n_grams: (e.g. “not happy”, “deeply sad”)
○ stop_words (e.g. “a”, “in”)

13

14

Scikit-learn pipeline prevents leakage by
chaining transformations with

cross-validation

Modelling: Test-Train splits and Pipelines

7744 lines coming from 19 documents

70% Train

30% Test

14

15

Modelling: Class Imbalance and Evaluation Metrics

2.08% of the lines are section titles

• False Negative: Section titles
incorrectly identified as a
in-text line

• False Positive: in-text line
incorrectly identified as a
section header

• In our scenario, we cared
slightly more about False
Negatives.

15

Classification Algorithms:

1. Baseline Model: Logistic Regression

2. Random Forest Classifier

3. XGBoost Classifier

Modelling: Algorithms

Parameter Tuning and Cross-validation

● Grid-search over parameters

● Using a 5-fold cross-validation: Stratified Shuffle Split

● Embedded in a scikit-learn Pipeline

Outlier Detection Algorithms:

1. Isolation Forest: Picks outliers by

randomly selecting features

2. Elliptic Envelope: Assume Gaussian

Covariance to isolate outliers

16

Modelling: Best Results on an Independent Test Set

True Negatives: 2,273 False Positives: 10

False Negatives: 4 True Positives: 36

Results Table

Random Forest

Max Depth: 50
Number of Trees: 100

Oversampling
Minority Class

Empirical Rule
Any line that begins

with “RE:” is labelled
as a section title

Threshold Precision Recall F1
Score

ROC
AUC

Accuracy

0.31 0.78 0.90 0.84 0.95 0.99

Confusion Matrix

17

Modelling: Important Features

18

Module 2

19

Background and Methodology

20

• Module 2 Objective: take the intermediate output
generated by Module 1 and produce good quality text
summarization

• We consider 5 different text summarization
techniques that range from simple frequency based
to semantic based analysis

• We consider two metrics (Levenshtein distance,
Jaccard distance) to compare the output generated
by these 5 methods

• Experimental evaluation and comparison of
summarization output

• Lessons learned from summarization exploration

Data Prep
& Input Data

Text Summarization
Methods

Summarized
Text Output

Comparison
Framework

Levenshtein
Jaccard

Summarization
w/Comparison Score

Original Document

Module 1

Module 1
Output

Module 2
ETL

Module 2
Input

How Text Summarization Works?

Abstractive Summarization: This method produces
summarization that is more human like where important
concepts are produced.

This method selects words based on semantic
understanding and tries to summarize based on
important concepts. Most methods interpret and examine
the text using advanced natural language techniques in
order to generate a new shorter text that conveys the
most critical information.

Input document → understand context → semantics →
create own summary.

Extractive Summarization: Sentences are ranked based
on important part of the sentences. Summarization method
chooses top ranked sentences.

Different algorithm and techniques are used to define
weights for the sentences and further rank them based on
importance and similarity among each other.

Input document → sentences similarity → weight sentences →
select sentences with higher rank.

Extractive Summarization returns top-N sentences as summarized output whereas Abstractive Summarization produces a key
set of concepts as summarization based on semantic analysis. The latter is often hard and more complex but more
human-like.

21

Broadly two categories of Text Summarization: Extractive and Abstractive

Module 1 Output schema

1. document: name of the document

2. page : page number where each text belongs to

3. text: the text from each line is store in this column

4. Class: the classification of each line text line

Module 2 Input Schema

1. document : document name

2. secIDin: the section id of a particular text

3. text: the text for each section

Data Preparation for Summarization Step

22

Data Preparation (Module 2 ETL)
• Original document is processed by Module 1 to generate a set of meta tags
• Module 2 ETL utilizes Module 1 Output to generate input data with appropriate features for Text Summarization Methods

 Module 2 Data ETL

Summarization Models
Luhn Model Lex Rank Model Tex Rank Model LSA Model NLTK

Core Idea Each sentence is
assigned a score based
on frequency of
occurrence and distance
among significant words;
next is to extract top-N
sentences with top
scores.

Sentences are assigned a
score based on TF-IDF and
creating a graph with edges
between similar sentences;
PageRank based approach is
used to compute rank of each
sentence; top-N ranked
sentences are extracted.

Similar to LexRank; While
LexRank uses cosine
similarity of TF-IDF
vectors, TextRank uses a
measure based on the
number of words two
sentences have in
common.

LSA projects data into a
lower dimensional space
using SVD; singular vectors
can capture and represent
word combination patterns;
magnitude of singular value
indicates importance of the
pattern in a document.

Simple text
based approach
summarization
using basic NLP
techniques such
as word
tokenization.

Category Extractive Extractive Extractive Close to abtractive Extractive

Frequency
based
ranking

Graph based
ranking

ML
Unsupervised

Semantic

23

Comparing Summarization Quality with Similarity Metrics … cont

• Our hypothesis: If summarization output produced by these methods are ”very similar” to
each other, this consensus is an indicator that summarization quality may be good.
Conversely, if the output are “highly dissimilar”, the summarization quality is at least is non
conclusive.

• We want to experimentally validate if “maximal consensus” is a good policy of picking
good summarization.

• Automated hypothesis testing: We choose two metrics to measure similarity between two
strings

○ Levenshtein distance: measures similarity at character level
○ Jaccard distance: measures dissimilarity at word level

How do we know whether summarization is good quality?

24

Jaccard distance: dissimilarity between two strings

 represents the total number of attributes where A and B both
have a value of 1.

 represents the total number of attributes where the attribute of
A is 0 and the attribute of B is 1.

 represents the total number of attributes where the attribute of
A is 1 and the attribute of B is 0.

 represents the total number of attributes where A and B both
have a value of 0.

Levenshtein distance: similarity between two strings

Mathematically, the Levenshtein distance between two
strings (of length and respectively) is given by

Comparing Summarization Quality with Similarity Metrics

where is the indicator function equal to 0 when
and equal to 1 otherwise, and is the distance
between the first characters of and the first
characters of

25

Experiments

26

Experiments and Results

27

Key Results

• L-score is more optimistic compared to J-score

• All methods have lowest similarity J-score with LSA

• Luhn and Text Rank seem to have highest similarity J-score

• LexRank and Text Rank summarization differs significantly
although both use PageRanking/Graph based model!

• Maximal Consensus (highest number of methods with similar
summarization) provided good summarization and validates our
hypothesis

• Associativity of similarity does not hold with summarization!

Summarization Output

Best Model:
● Maximal consensus on summarization seems to be a good choice
● Luhn and Text Rank have highest similarity score in our analysis
● Jaccard score is a better candidate for text summarization comparison

28

Lesson Learned & Future Work

29

Lessons

● Check the integrity of your dataset until the last moment
● Make sure to manually inspect where your model is making mistakes
● ML is not a panacea to all ills, so be flexible about other ways of supporting it
● NLTK based summarization are counterintuitive as was shown in metrics table
● Jaccard score is a better metric for comparison
● Maximal consensus based summarization gives better quality results

Future Work

● Evaluate abstractive summarization
● Explore CNN vector representations
● Evaluate models using other metrics such as Rouge, Blue, and Meteor

3030

Thanks!
Questions?

Liliana Cruz-Lopez

● Module 1: Converted PDFs to HTMLs, extracted
raw features from HTMLs and contributed to
engineered features

● Module 2: completed end-to-end text
summarization

Pranjal Bajaj

● Model concept and development

● Model implementation: Choosing Metrics and
Implementing best practices using scikit-learn

* In alphabetical order

Main contribution from team members

31

Minsu Yeom

● Preprocessing: Feature engineering (Line
space(LS), Ratio of title word to total), Converted
PDFs to XMLs

● Model implementation: XGBoost

Gayani Perera

● PDF Ingestion, Feature engineering, model
implementation : Random Forest

● Extractive text summarization

Appendix

32

Scikit-learn Pipeline

33

34

Precision - Recall vs Threshold for Best Model:
Random Forest

35

HTML-based features (“raw”)

36

Table of Best Results

