Classifying Food and Beverage Establishments from Website Data

Gaurav Chawla, Jason Kuo, Nanshan Li and Andres Potapczynski

COLUMBIA UNIVERSITY Data Science Institute

Neoway delivers customer insights based on firmographic data publicly available on the web

Neoway

OUR OFFER OUR CAPABILITIES ONE STOP SOLUTION CUSTOMERS SIMULATOR

EN E

LOGIN

Firmographics

We know Consumer Goods

Today there are hundreds of thousands of independent food/beverages operators and retailers in the USA.

Using industry specific data, Neoway helps uncover this landscape, whether you are looking to discover new sales opportunities, optimize your go-to-market approach, or maximize sales with existing customers.

Health Inspection

Liquor License

* -

SEE HOW IT WORKS

They want to uncover certain food/beverages categories from establishment webpages

For this, they have gathered close to 1M HTMLs from ~200K establishments

We designed a pipeline to help them improve the previous process

We designed a pipeline to help them improve the previous process

Store the tokenized data in a single DB to accelerate the model prototyping and shareability

Tokenized HTML

certificate, coupon,

Windy, city, grille, home, gift,

restaurant, overview, letter,

side, challenge, photo, meal,

history, menu, main, dish,

social, medium, facebook,

twitter, foursquare, contact,

privacy, policy, gyro, menu,

strip, cooked, lamb, beef,

tomato, onion, cucumber,

tomato, onion, cucumber

menu, grilled, chicken,

sauce, pita, fold, chicken, gyro,

application, windy, city, grille,

Driginal HTML

lang="en">\\n<head>\\n<meta charset="UTF-8">\\n<title>Windy City Grille</title>\\n\\n<meta name="norton-safeweb-site-verification" content="gyww51iscbghtbjem97962ns68lpo3i2sx7fld-gvazvflhxysybdz0px8lzrz10oinhmrm2zlipwmiw5ybtl cw3te5nim-cbg5pag7cmmt0at4wv56llujdcudrji" />\\n<meta name="keywords"</pre> content="Restaurant, Wyoming MI, Wyoming, Michigan, 49519, Byron Center Ave SW, Karadchy, Chicago Style, Chicago, Gyro, Sandwiches, Grille, feta cheese, Vienna, food challenge, wall of fame, wall of shame, eating contest, man vs. food, catering, cater, caterer in wyoming michigan, caterer in wyoming mi">\\n<meta name="description" content="The Windy City Grille is a family owned and operated establishment priding ourselves in delivering authentic food of the highest quality at a great price.">\\n<meta name="OWNER" content="Will Karadchy">\\n<meta name="ALIAS" content="Windy City Grille">\\n<meta name="AUTHOR" content="bluevortex.net">\\n<meta HTTP-EQUIV="Pragma" CONTENT="cache">\\n'

b'b\'<!DOCTYPE HTML>\\n<html

Approach

- Extracted HTML body via XML parser
- Employed NLTK package for lemmatizing, handling punctuation and capitalization, etc
- POS tagging removed sentence filler words
- Created a parallelizable implementation for speed

Recommendations / Next Steps

- Generate a consolidated DB that contains all the tokens for each establishment
 - Use a NoSQL DB such as SQLite Dict or Mongo DB

We designed a pipeline to help them improve the previous process

Separate and only use the informative HTMLs to reduce computational overhead

1 Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008, December). Isolation forest. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on (pp. 413–422). IEEE.

We designed a pipeline to help them improve the previous process

Use Topic Modeling and Doc2Vec to get a dense feature representation

Understand the topics present in the data and create features that preserve its semantics

LDA¹ and NMF² helped uncover topics in the data

LDA Topic Examples with top words

- Topic 44: pizza, cheese, chicken, sauce, mozzarella, tomato, onion, italian, garlic
- Topic 46: margarita, tacos, taco, mexican, menu, location, specials, happy hour
- Topic 71: twitter, facebook, instagram, google, email, skip, press, online, menu, location
- Topic 76: chicken, rice, shrimp, sauce, beef, pork, fried, vegetable, onion, spicy

NMF Topic Examples with top words

- Topic 1: cheese, bacon, onion, tomato, lettuce, salad, cheddar, chicken, choice, potato
- Topic 4: pizza, slice, topping, crust, pepperoni, cheese, large, pasta, order, phone
- Topic 6: mexican, authentic, margarita, family, salsa, tacos, good, recipe, nachos
- Topic 83: good, greate place, time, friendly staff, family, atomoshpere, town, friend

Recommendations / Next Steps

 Augment establishment categorization based on the topics uncovered

1 Blei, et. al. Latent Dirichlet Allocation, 2 Dhillon I. Generalized Nonnegative Matrix Approximations, 3 Mikolov T. and Le Q. Distributed Representations of Sentences and Documents.

Now, we designed a pipeline to help them improve the previous process

Overall Results and models used for each classification task

Overall Results and models used for each classification task

Cuisine classification carried considerable difficulties

Task: Multi-label Classification Metrics 99 non-mutually exclusive cuisines Hamming loss Jaccard Similarity Score Implied hierarchy not present ۲ Micro-average Precision & Recall Multi-label output required F1 Score sian hison anonese clinese pagest areiton se Highly imbalanced data • Three main approaches: Classifier Chain Binary Relevance Assumes independence between cuisines Classification Chains Output is added to input of the next classifier: n! permutations Multi-label KNN

Cuisine classification carried considerable difficulties

- Comparing results from different feature representations on Logistic Regression BR:
 - LDA
 - LDA + Doc2Vec

Decision Tree

Logistic Regression

- Random Forest

- KNN

- NMF
- Doc2Vec
- One hot encoding

Recommendations

- Clean up existing cuisine labels
- Develop potential hierarchy and orthogonal label framework:
 - Regional cuisines
 - Food
 - Restaurant format
 - Dietary restrictions
- Framework / spatial understanding of cuisines can be used to improve approach taken in this task

Overall Results and models used for each classification task

The Ridge Regression coefficients correctly capture the relevant words for each class

Our models handle cases where the labels are incorrect

Ad-hoc	limitations

- Heavily dependent on domain knowledge
- Not adaptable to new labels
- RegEx language hard to debug and error-prone

Pipeline results	Next Steps
 Derives domain knowledge based on labeled data 	 Run ensemble algorithms like CatBoost
Scalable to all types of problems	 Add weightings to deal with the minority class
Robust to mistakes and noise	 Create a small test set to validate performance while avoiding noisy labels

Isolation Forest assigns an anomaly score for each observation

Use TF-IDF to construct a manageable vocabulary

LDA uncovers the topics present in the data

NMF also finds topics in the data

Doc2Vec generates a dense vector representation that preserves the semantics

Multi-label classification metrics

Before, Neoway relied on ad-hoc methods which carried some limitations

Defining a set of rules	Inspecting the HTMI	
 Determined the relevant 	<pre></pre>	Limitations
keywords to look for: — Organic	<body></body>	 Heavily dependent on domain knowledge
— — Tortilla	<h1> Welcome to Whole Foods </h1>	Not adaptable to new labels
 Construct a set of RegExs to find the keywords /[\w, %+-]+[]/ 	, Find the best deals on organic	 Difficult to handle various forms of the same lemma
/[(//////	apples	 RegEx language hard to debug and error-prone
Run the search on the database	 	 Unwieldy supporting large vocabulary