Global Subsurface Chlorophyll a Distribution Prediction from Satellite-Derived Surface Data
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Abstract: Understanding Subsurface Chlorophyll a

In today’s rapidly-changing climate, understanding the ocean on a large scale is crucial
to maintain and sustain biogeochemical processes worldwide. Subsurface chlorophyll a
is a proxy for phytoplankton biomass and photosynthesis, which are key components of
long term carbon storage at the ocean floor. Thus, predicting subsurface chlorophyll a
distributions using only satellite-derived data with BGC-Argo float data as ground truth
gives insight into phytoplankton behavior at a high spatial- and temporal-resolution.

Monthly Average Chlorophyll a values: September 2022
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Figure 1. Left: Monthly average chlorophyll a values derived by NASA satellites;
Right: Diagram of a single BGC-Argo float-cycle. (Source: Calustre et al. 2020)

Chlorophyll a Behavior: Biomes and Dropoff Patterns

Previous work by Bock et. al 2022 found that the ocean has six distinct biomes with
characteristic chlorophyll a distributions. We leverage these characteristic distributions
to smooth our model predictions by creating a weighted-average mixture. Euphotic zone
depth estimates are obtained for each float-cycle, enabling depth normalization for
comparability across the variable chlorophyll productive zones throughout the ocean.

Average Biome [CHLA] Distribution by Depth CHLA Dropoff for Cycle 238 of Float 6901180
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Figure 2. Left: Characteristic chlorophyll a distributions for each biome;
Right: Example of euphotic zone depth estimation for a float-cycle.
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Results: Predictions from XGBoosting Regressor and Neural Network

We define a mixed-model approach that inputs various spatial, temporal, and
satellite-derived features at standardized depth intervals into an XGBoosting regression
ensemble model. The results are then input into a neural network to combat overfitting
while achieving more continuous predictions, and fit to the appropriate biome
characteristic distribution. With subsurface chlorophyll measurements from BGC-Argo
floats as ground truth, the model achieves a test R? score of 0.64 and a test mean
squared error of 0.07 across the global ocean, demonstrating strong predictive capacity.
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Figure 3. Top: Preprocessing, model, and postprocessing pipeline;
Bottom Left: True v. Predicted (XGB) chlorophyll a values on train and test sets;
Bottom Right: chlorophyll-a distribution prediction for a single example float-cycle.

Conclusion: For the Future of Plankton and Planet

Our model shows that surface-level ocean measurements can be used to generate
reasonable predictions for subsurface chlorophyll a concentrations. As a result, our
model acts as a potential substitute for the otherwise resource-intensive process of
manually collecting subsurface chlorophyll a measurements. Understanding such
distributions is crucial for further research regarding the biological carbon pump, and
our results establish benchmarks for future analysis and testing.
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