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Background and Methods

In recent years, artificial intelligence has been widely used to predict stock prices, but limited attention was paid to companies’ financial
status which is one of the most influencing factors against stock price. Creating a high-quality performance forecast would definitely aid
market participants such as investors to make better trading decisions and manage their portfolios more suitably while outperforming

the market.
e For this reason, our research focused on forecasting companies’ financial performance using quarterly released 10-K/10-Q filings

including Balance Sheet, Income Statement and Cash Flow.
e Mathematically, we aimed at building a multivariate multi-target model fy that takes historical time series data X and k& as input and

output Y where £ is the number of time steps looked back:

X = (Xt—pt1, Xt—tt2,---, X)), Y=2X441, X;€R®

e We leveraged the EODHistoricalData API to collect financial fundamentals (Balance Sheet, Income Statement and Cash Flow) of 2,321
Nasdag Composite components for at least 5 years and ended up with a dataset of 171,560 entries as well as 128 features.

e Based on the exploratory analysis, missing values were prevalent in most features so we set a cut-off point of 5% to filter out “bad” ones.
We also dropped companies that contain NAs in the remaining features from the dataset.

Missing values in Income Statement
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Figure 1. Percentage of NAs in Income Statement. Figure 2. Correlation Heatn81ap o

e Since financial fundamentals are highly correlated, we selectively deleted features with high correlation by drawing a heatmap and finally
got a “good” dataset of 16,368 entries as well as 7 features among which 3 are from Balance Sheet, 2 are from Income Statement, and 2

are from Cash Flow.
e We used univariate ARIMA models as the baseline and built LSTM as well as Transformers for performance improvement. During model

selection, AIC and MSE were used as loss functions for ARIMA and DL models respectively.

Results
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