Gene Mutation Web Application (MUTABLE)

Data Science Institute COLUMBIA UNIVERSITY

Intuition and Project Scope

From a micro perspective, human contains enormous amounts of genes within cells of different type, and mutations of genes are highly related to human diseases. With the large dataset of cells and mutations, we build a website that aim to curate and visualize genomic data to help exploratory analysis of genetic mutations in human diseases.

- Visualization of gene expression is important in genetic analysis. Disease relevant mutations are likely to have specific patterns in their location, therefore we use lollipop plots to visualize the mutations.
- Main learning objectives contain machine learning methods applied in genomics and genetics including data engineering, hierarchical clustering, statistical analysis, etc.

Single Cell Data Analysis

- Curated single cell expression data of AnnData type (Table 1) are provided containing info about tissue, gene, cell type, expression level, etc.
- Based on the data, single cell expression profile (Figure 4) for each gene are generated including two parts:
 - A table showing gene expression with respect to cell type, in which we display average expression level, percentage of positive expression, and number of cells
 - A bar plot (Figure 1) showing positive expression percentage of each gene in each cell type. For x-axis, the cell types are ordered according to hierarchical clustering (Figure 2) so that similar cell types are put together.

Citation	tissue	location on md22	number of cells	number of cell types
La Manno, et al. 2016	Fetal Midbrain	/fisher/Projects/SingleCellData/LaManno_2016_midbrain	1,977	26
Zhong, et al. 2018	Prefrontal cortex	/fisher/Projects/SingleCellData/Zhong_2018_PrefrontalContex	8,686	6
Cao, et al. 2020	Cerebellum	/fisher/Projects/SingleCellData/Cao_2020	1,080,771	9
same as above	Cerebrum	same as above	1,711,950	9
same as above	Heart	same as above	96,622	16
same as above	Lung	same as above	214,387	13

Figure 1. Bar Plot of Gene PTEN in Fetal Midbrain

Acknowledgments

Appreciation and thanks to the guidance and support of Professor Yufeng Shen for this project. Also grateful to the assistance of Jake Hagen and Lu Qiao from Shen Lab and Katie Jooyoung Kim.

Authors: Junyi Yao, Yi Duan, Yiquan Li, Zhe Hou, Zining Chen **Faculty Mentor: Yufeng Shen**

Table 1. Main data sources of single cell data

Figure 2. Dendrogram of Fetal Midbrain

Lollipop Plots for Gene Mutations

To visualize the mutations of each gene, lollipop plots are generated. Each mutation is presented as a lollipop plotted along the protein sequence. The stacked number of **Iollipops** indicates the number of mutations on the same sequence. And the x-axis represents the protein sequence with *PFAM* protein blocks colored. Mutations are categorized into different groups based on impact (Figure 3). All mutation data and attributes are retrieved from de novo mutations (Table 2).

Figure 3. Lollipop Plot for Gene PTEN

Website Layout (plots excluded)

Mutab]	able		gene			search			CHD5 GeneCards			Single Cell Information Single Cell Info for midbrain:				
Chr	Position	Ref>Alt	Sample		Cohort	Condition	NDD	Consequence	Transcript	AA_change	DNA_change	CADD	REVEL	^		
chr1	6106674	G>A	SP0007336		SPARK	autism	1	missense	ENST00000262450	1895S>1895L	6106674G>A	31.0	0.866	Tissue Cell Type	Mean	# cells
chr1	6106691	G>A	SP0012812		SPARK	autism	0	synonymous	ENST00000262450	1889A	6106691G>A	None	None	Mid BrainhSert	0.86	14
chr1	6109929	G>A	3-0740-000A		MSSNG	autism	None	missense	ENST00000262450	1815T>1815M	6109929G>A	24.5	0.378	Mid BrainhNbGaba	0.63	22
chr1	6112210	G>A	rumc_patient_390	9	RUMC	NDD	1	synonymous	ENST00000262450	1690D	6112210G>A	None	None	Mid BrainhGaba	0.62	59
chr1	6112956	T>A	GDX_102970		GDX	NDD	1	missense	ENST00000262450	1652E>1652V	6112956T>A	25.0	0.078	Mid BrainhDA2	0.52	37
chr1	6124569	G>T	SP0058507		SPARK	autism	1	missense	ENST00000262450	1496S>1496Y	6124569G>T	28.2	0.655	Mid BrainhDA1	0.5	38
chr1	6125765	C>A	DDD13k.06090		DDD	NDD	1	splice_donor	ENST00000262450	None	None	33.0	None	Mid BrainhRgl3	0.31	51
chr1	6125765	C>T	DDD13k.07947		DDD	NDD	1	splice_donor	ENST00000262450	None	None	33.0	None	Mid BrainUnk	0.3	282
chr1	6128536	G>A	GDX_37357		GDX	NDD	1	synonymous	ENST00000262450	1231A	6128536G>A	None	None	Mid BrainhRgl2b	0.3	77
chr1	6128866	C>T	GDX_37982		GDX	NDD	1	synonymous	ENST00000262450	1197T	6128866C>T	None	None	Mid BrainhOMTN	0.29	106
chr1	6131658	G>A	DEASD_0125_001		ASC	autism	0	missense	ENST00000262450	1079R>1079W	6131658G>A	29.1	0.897	Mid BrainhDA0	0.28	47
chr1	6135255	G>A	GDX_101979		GDX	NDD	1	missense	ENST00000262450	949R>949W	6135255G>A	27.5	0.654	Mid BrainhOPC	0.21	29
4										• • • • • • • • • • • • • • • • • • • •				Mid BrainhPeric	0.19	191
														Mid BrainhEndo	0.17	77
														Mid BrainhRgl2a	0.17	210
	ition Count													Mid BrainhRgl2c	0.16	26
ASD	23400													Mid BrainhNbML5	0.16	47
NDD	31565													Mid BrainhMgl	0.12	19
CDH	595													Mid BrainhNbML1	0.095	52
CDH/0														Mid BrainhRgl1	0.074	39
CHD	3841													Mid BrainhNbM	0.066	91
EA/TI	EF 141													Mid BrainhRN	0.057	40

Conclusion

Genes highly expressed in cell types relevant to a condition or diseases are more likely to be a risk gene. On the flip side, cell types in which known risk genes are highly and specifically expressed are likely to be relevant to a disease. We create a gene centric view in a web engine to support the relevant exploratory analysis of genomic data in human disease studies. The website is built reliable and sustainable for future research in Shen Lab at Columbia University.

References

The Tabula Muris Consortium., Overall coordination., Logistical coordination. et al. Nature 562, 367-372 (2018). https://doi.org/10.1038/s41586-018-0590-4

Data Science Capstone Project with Professor Yufeng Shen, **Department of Systems Biology and Biomedical** Informatics

■ DSPc ■ PTEN C2

 Table 2. Data source

 for mutations

The website supports searching a specific gene in different tissues for corresponding mutation data, single cell info, bar plot & lollipop plot (plots excluded in figures below).

Figure 4. Website Layout when Searching for Gene CHD5

% > 0
0.71
0.41
0.36
0.32
0.37
0.24
0.18
0.23
0.21
0.19
0.17
0.15
0.13
0.13
0.077
0.13
0.11
0.077
0.051
0.066
0.025
A A25

